Nuprl Lemma : sublist_transitivity
∀[T:Type]. ∀L1,L2,L3:T List.  (L1 ⊆ L2 ⇒ L2 ⊆ L3 ⇒ L1 ⊆ L3)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sublist: L1 ⊆ L2, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
cand: A c∧ B, 
compose: f o g, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
nat: ℕ, 
so_apply: x[s]
Lemmas referenced : 
compose_wf, 
int_seg_wf, 
length_wf, 
increasing_wf, 
length_wf_nat, 
all_wf, 
equal_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
non_neg_length, 
lelt_wf, 
nat_properties, 
sublist_wf, 
list_wf, 
compose_increasing
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
productEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L3:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  L2  \msubseteq{}  L3  {}\mRightarrow{}  L1  \msubseteq{}  L3)
Date html generated:
2018_05_21-PM-00_33_05
Last ObjectModification:
2018_05_19-AM-06_42_47
Theory : list_1
Home
Index