Nuprl Lemma : sublist_transitivity

[T:Type]. ∀L1,L2,L3:T List.  (L1 ⊆ L2  L2 ⊆ L3  L1 ⊆ L3)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sublist: L1 ⊆ L2 exists: x:A. B[x] and: P ∧ Q member: t ∈ T cand: c∧ B compose: g prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top less_than: a < b squash: T ge: i ≥  nat: so_apply: x[s]
Lemmas referenced :  compose_wf int_seg_wf length_wf increasing_wf length_wf_nat all_wf equal_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf nat_properties sublist_wf list_wf compose_increasing
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut introduction extract_by_obid isectElimination natural_numberEquality hypothesisEquality hypothesis independent_pairFormation sqequalRule productEquality cumulativity functionExtensionality applyEquality because_Cache lambdaEquality setElimination rename independent_isectElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality imageElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L3:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  L2  \msubseteq{}  L3  {}\mRightarrow{}  L1  \msubseteq{}  L3)



Date html generated: 2018_05_21-PM-00_33_05
Last ObjectModification: 2018_05_19-AM-06_42_47

Theory : list_1


Home Index