Step
*
of Lemma
sublist_transitivity
∀[T:Type]. ∀L1,L2,L3:T List. (L1 ⊆ L2
⇒ L2 ⊆ L3
⇒ L1 ⊆ L3)
BY
{ xxx(Auto
THEN (All (Unfold `sublist`))
THEN ExRepD
THEN InstConcl [f o f1]⋅
THEN Auto
THEN Try (Complete (Auto'))
THEN Reduce 0)xxx }
1
1. [T] : Type
2. L1 : T List
3. L2 : T List
4. L3 : T List
5. f1 : ℕ||L1|| ⟶ ℕ||L2||
6. increasing(f1;||L1||)
7. ∀j:ℕ||L1||. (L1[j] = L2[f1 j] ∈ T)
8. f : ℕ||L2|| ⟶ ℕ||L3||
9. increasing(f;||L2||)
10. ∀j:ℕ||L2||. (L2[j] = L3[f j] ∈ T)
⊢ increasing(f o f1;||L1||)
2
1. T : Type
2. L1 : T List
3. L2 : T List
4. L3 : T List
5. f1 : ℕ||L1|| ⟶ ℕ||L2||
6. increasing(f1;||L1||)
7. ∀j:ℕ||L1||. (L1[j] = L2[f1 j] ∈ T)
8. f : ℕ||L2|| ⟶ ℕ||L3||
9. increasing(f;||L2||)
10. ∀j:ℕ||L2||. (L2[j] = L3[f j] ∈ T)
11. increasing(f o f1;||L1||)
12. j : ℕ||L1||
⊢ L1[j] = L3[f (f1 j)] ∈ T
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}L1,L2,L3:T List. (L1 \msubseteq{} L2 {}\mRightarrow{} L2 \msubseteq{} L3 {}\mRightarrow{} L1 \msubseteq{} L3)
By
Latex:
xxx(Auto
THEN (All (Unfold `sublist`))
THEN ExRepD
THEN InstConcl [f o f1]\mcdot{}
THEN Auto
THEN Try (Complete (Auto'))
THEN Reduce 0)xxx
Home
Index