Nuprl Lemma : sublist_tl
∀[T:Type]. ∀L1,L2:T List.  L1 ⊆ tl(L2) 
⇒ L1 ⊆ L2 supposing ¬↑null(L2)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
null: null(as)
, 
tl: tl(l)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
not: ¬A
, 
false: False
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
isect_wf, 
not_wf, 
assert_wf, 
null_wf, 
sublist_wf, 
tl_wf, 
nil-sublist, 
nil_wf, 
cons_wf, 
null_nil_lemma, 
reduce_tl_nil_lemma, 
true_wf, 
null_cons_lemma, 
reduce_tl_cons_lemma, 
false_wf, 
cons_sublist_cons, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
voidElimination, 
rename, 
isect_memberEquality, 
voidEquality, 
Error :universeIsType, 
because_Cache, 
universeEquality, 
natural_numberEquality, 
productElimination, 
inrFormation, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    L1  \msubseteq{}  tl(L2)  {}\mRightarrow{}  L1  \msubseteq{}  L2  supposing  \mneg{}\muparrow{}null(L2)
Date html generated:
2019_06_20-PM-01_22_42
Last ObjectModification:
2018_09_26-PM-05_23_26
Theory : list_1
Home
Index