Nuprl Lemma : sublist_tl

[T:Type]. ∀L1,L2:T List.  L1 ⊆ tl(L2)  L1 ⊆ L2 supposing ¬↑null(L2)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 null: null(as) tl: tl(l) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: implies:  Q so_apply: x[s] not: ¬A false: False top: Top assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q
Lemmas referenced :  list_induction all_wf list_wf isect_wf not_wf assert_wf null_wf sublist_wf tl_wf nil-sublist nil_wf cons_wf null_nil_lemma reduce_tl_nil_lemma true_wf null_cons_lemma reduce_tl_cons_lemma false_wf cons_sublist_cons equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality independent_functionElimination dependent_functionElimination voidElimination rename isect_memberEquality voidEquality Error :universeIsType,  because_Cache universeEquality natural_numberEquality productElimination inrFormation productEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    L1  \msubseteq{}  tl(L2)  {}\mRightarrow{}  L1  \msubseteq{}  L2  supposing  \mneg{}\muparrow{}null(L2)



Date html generated: 2019_06_20-PM-01_22_42
Last ObjectModification: 2018_09_26-PM-05_23_26

Theory : list_1


Home Index