Nuprl Lemma : fun-connected-step

[T:Type]. ∀f:T ⟶ T. ∀x:T.  (Dec((f x) x ∈ T)  is f*(x))


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q fun-connected: is f*(x) decidable: Dec(P) or: P ∨ Q member: t ∈ T prop: exists: x:A. B[x] fun-path: y=f*(x) via L top: Top subtract: m last: last(L) select: L[n] cons: [a b] and: P ∧ Q cand: c∧ B less_than: a < b squash: T less_than': less_than'(a;b) true: True guard: {T} int_seg: {i..j-} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A sq_type: SQType(T)
Lemmas referenced :  decidable_wf equal_wf cons_wf nil_wf length_of_cons_lemma length_of_nil_lemma reduce_hd_cons_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf select_wf int_seg_wf fun-path_wf decidable__equal_int subtype_base_sq int_subtype_base intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma decidable__le itermAdd_wf int_term_value_add_lemma decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution unionElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis functionEquality universeEquality dependent_pairFormation sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation natural_numberEquality imageMemberEquality baseClosed because_Cache setElimination rename productElimination independent_isectElimination lambdaEquality int_eqEquality intEquality computeAll independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry addEquality instantiate independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x:T.    (Dec((f  x)  =  x)  {}\mRightarrow{}  f  x  is  f*(x))



Date html generated: 2018_05_21-PM-07_44_53
Last ObjectModification: 2017_07_26-PM-05_22_25

Theory : general


Home Index