Nuprl Lemma : fun-path-cons
∀[T:Type]. ∀[f:T ⟶ T]. ∀[L:T List]. ∀[x,y,z:T].
  uiff(z=f*(x) via [y / L];{(z = y ∈ T)
  ∧ ((y = (f hd(L)) ∈ T) ∧ (¬(y = hd(L) ∈ T))) ∧ hd(L)=f*(x) via L supposing 0 < ||L||
  ∧ x = y ∈ T supposing ¬0 < ||L||})
Proof
Definitions occuring in Statement : 
fun-path: y=f*(x) via L
, 
hd: hd(l)
, 
length: ||as||
, 
cons: [a / b]
, 
list: T List
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
not: ¬A
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
fun-path: y=f*(x) via L
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
last: last(L)
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
le: A ≤ B
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
sq_type: SQType(T)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list-cases, 
product_subtype_list, 
equal_wf, 
hd_wf, 
decidable__le, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
select_wf, 
int_seg_properties, 
subtract_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
int_seg_wf, 
less_than_wf, 
not_wf, 
fun-path_wf, 
cons_wf, 
length_of_cons_lemma, 
add-is-int-iff, 
false_wf, 
list_wf, 
member-less_than, 
length_of_nil_lemma, 
reduce_hd_cons_lemma, 
stuck-spread, 
base_wf, 
all_wf, 
nil_wf, 
equal-wf-T-base, 
equal-wf-base, 
equal-wf-base-T, 
lelt_wf, 
select-cons-tl, 
add-subtract-cancel, 
non_neg_length, 
select-cons-hd, 
add_nat_plus, 
le_wf, 
nat_plus_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
length_wf_nat, 
member_wf, 
add-member-int_seg2, 
le_weakening2, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
squash_wf, 
and_wf, 
true_wf, 
select_cons_tl, 
iff_weakening_equal, 
subtract-is-int-iff, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
general_arith_equation1
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
imageElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
setElimination, 
rename, 
functionExtensionality, 
applyEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
productEquality, 
isectEquality, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
independent_pairEquality, 
axiomEquality, 
lambdaFormation, 
independent_functionElimination, 
imageMemberEquality, 
minusEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[L:T  List].  \mforall{}[x,y,z:T].
    uiff(z=f*(x)  via  [y  /  L];\{(z  =  y)
    \mwedge{}  ((y  =  (f  hd(L)))  \mwedge{}  (\mneg{}(y  =  hd(L))))  \mwedge{}  hd(L)=f*(x)  via  L  supposing  0  <  ||L||
    \mwedge{}  x  =  y  supposing  \mneg{}0  <  ||L||\})
Date html generated:
2018_05_21-PM-07_43_14
Last ObjectModification:
2017_07_26-PM-05_21_12
Theory : general
Home
Index