Nuprl Lemma : fun-connected_weakening_eq
∀[T:Type]. ∀f:T ⟶ T. ∀x,y:T.  y is f*(x) supposing x = y ∈ T
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fun-connected: y is f*(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
fun-path: y=f*(x) via L
, 
and: P ∧ Q
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
last: last(L)
, 
subtract: n - m
, 
select: L[n]
, 
cons: [a / b]
, 
cand: A c∧ B
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
Lemmas referenced : 
equal_wf, 
cons_wf, 
nil_wf, 
fun-path_wf, 
length-singleton, 
reduce_hd_cons_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
select_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
functionEquality, 
universeEquality, 
dependent_pairFormation, 
functionExtensionality, 
applyEquality, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
equalitySymmetry, 
because_Cache, 
setElimination, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
independent_pairEquality, 
equalityTransitivity, 
addEquality
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y:T.    y  is  f*(x)  supposing  x  =  y
Date html generated:
2018_05_21-PM-07_44_44
Last ObjectModification:
2017_07_26-PM-05_22_17
Theory : general
Home
Index