Nuprl Lemma : fun-connected_weakening_eq

[T:Type]. ∀f:T ⟶ T. ∀x,y:T.  is f*(x) supposing y ∈ T


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  fun-connected: is f*(x) uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T prop: exists: x:A. B[x] fun-path: y=f*(x) via L and: P ∧ Q top: Top less_than: a < b squash: T less_than': less_than'(a;b) true: True last: last(L) subtract: m select: L[n] cons: [a b] cand: c∧ B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A
Lemmas referenced :  equal_wf cons_wf nil_wf fun-path_wf length-singleton reduce_hd_cons_lemma length_of_cons_lemma length_of_nil_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf select_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality functionEquality universeEquality dependent_pairFormation functionExtensionality applyEquality independent_pairFormation isect_memberEquality voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination equalitySymmetry because_Cache setElimination productElimination independent_isectElimination lambdaEquality int_eqEquality intEquality computeAll independent_pairEquality equalityTransitivity addEquality

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y:T.    y  is  f*(x)  supposing  x  =  y



Date html generated: 2018_05_21-PM-07_44_44
Last ObjectModification: 2017_07_26-PM-05_22_17

Theory : general


Home Index