Step
*
2
1
of Lemma
gcd-mod
1. x : ℕ+
2. y : ℕ
3. ¬(y = 0 ∈ ℤ)
⊢ gcd(x;y rem x) = gcd(x;y) ∈ ℤ
BY
{ xxx((RW (AddrC [3] (LemmaC `gcd_com`)) 0 THENA Auto)
THEN (RW (AddrC [3] RecUnfoldTopAbC) 0 THENA Auto)
THEN AutoSplit)xxx }
Latex:
Latex:
1. x : \mBbbN{}\msupplus{}
2. y : \mBbbN{}
3. \mneg{}(y = 0)
\mvdash{} gcd(x;y rem x) = gcd(x;y)
By
Latex:
xxx((RW (AddrC [3] (LemmaC `gcd\_com`)) 0 THENA Auto)
THEN (RW (AddrC [3] RecUnfoldTopAbC) 0 THENA Auto)
THEN AutoSplit)xxx
Home
Index