Step
*
of Lemma
list_split_prefix
∀[T:Type]. ∀[L:T List]. ∀[g:(T List) ⟶ 𝔹].
↑(g (snd(list_split(g;concat(fst(list_split(g;L))))))) supposing ¬↑null(fst(list_split(g;L)))
BY
{ (RepeatFor 2 ((D 0 THENA Auto)) THEN MoveToConcl (-1) THEN (BLemma `last_induction` THENA Auto)⋅) }
1
1. T : Type
⊢ ∀[g:(T List) ⟶ 𝔹]. ↑(g (snd(list_split(g;concat(fst(list_split(g;[]))))))) supposing ¬↑null(fst(list_split(g;[])))
2
1. T : Type
⊢ ∀ys:T List. ∀y:T.
((∀[g:(T List) ⟶ 𝔹]
↑(g (snd(list_split(g;concat(fst(list_split(g;ys))))))) supposing ¬↑null(fst(list_split(g;ys))))
⇒ (∀[g:(T List) ⟶ 𝔹]
↑(g (snd(list_split(g;concat(fst(list_split(g;ys @ [y]))))))) supposing ¬↑null(fst(list_split(g;ys @ [y])))))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[g:(T List) {}\mrightarrow{} \mBbbB{}].
\muparrow{}(g (snd(list\_split(g;concat(fst(list\_split(g;L))))))) supposing \mneg{}\muparrow{}null(fst(list\_split(g;L)))
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto)) THEN MoveToConcl (-1) THEN (BLemma `last\_induction` THENA Auto)\mcdot{})
Home
Index