Nuprl Lemma : list_split_prefix

[T:Type]. ∀[L:T List]. ∀[g:(T List) ⟶ 𝔹].
  ↑(g (snd(list_split(g;concat(fst(list_split(g;L))))))) supposing ¬↑null(fst(list_split(g;L)))


Proof




Definitions occuring in Statement :  list_split: list_split(f;L) null: null(as) concat: concat(ll) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) not: ¬A apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B top: Top so_apply: x[s] guard: {T} list_split: list_split(f;L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] pi1: fst(t) concat: concat(ll) assert: b ifthenelse: if then else fi  btrue: tt pi2: snd(t) not: ¬A true: True false: False sq_stable: SqStable(P) squash: T bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  last_induction uall_wf list_wf bool_wf isect_wf not_wf assert_wf null_wf3 equal_wf subtype_rel_list top_wf list_split_wf concat_wf set_wf is_list_splitting_wf pi1_wf_top pi2_wf assert_witness subtype_rel_product list_accum_nil_lemma null_nil_lemma reduce_nil_lemma true_wf sq_stable__uall sq_stable__assert squash_wf list_accum_append list_accum_cons_lemma uiff_transitivity equal-wf-T-base eqtt_to_assert assert_of_null iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot append_wf cons_wf nil_wf equal_functionality_wrt_subtype_rel2 list_split_inverse concat_append reduce_cons_lemma append-nil
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity hypothesis because_Cache lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination applyEquality independent_isectElimination isect_memberEquality voidElimination voidEquality functionExtensionality productEquality spreadEquality productElimination independent_pairEquality setElimination rename universeEquality natural_numberEquality imageMemberEquality baseClosed imageElimination unionElimination equalityElimination independent_pairFormation impliesFunctionality hyp_replacement applyLambdaEquality setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[g:(T  List)  {}\mrightarrow{}  \mBbbB{}].
    \muparrow{}(g  (snd(list\_split(g;concat(fst(list\_split(g;L)))))))  supposing  \mneg{}\muparrow{}null(fst(list\_split(g;L)))



Date html generated: 2018_05_21-PM-08_05_51
Last ObjectModification: 2017_07_26-PM-05_41_48

Theory : general


Home Index