Nuprl Lemma : is_list_splitting_wf
∀[T:Type]. ∀[L:T List]. ∀[LL:T List List]. ∀[L2:T List]. ∀[f:(T List) ⟶ 𝔹].  (is_list_splitting(T;L;LL;L2;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
is_list_splitting: is_list_splitting(T;L;LL;L2;f)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is_list_splitting: is_list_splitting(T;L;LL;L2;f)
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
list_wf, 
append_wf, 
concat_wf, 
length_wf, 
length-append, 
l_all_wf2, 
not_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
all_wf, 
l_member_wf, 
iseg_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
functionEquality, 
setEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[LL:T  List  List].  \mforall{}[L2:T  List].  \mforall{}[f:(T  List)  {}\mrightarrow{}  \mBbbB{}].
    (is\_list\_splitting(T;L;LL;L2;f)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-08_04_30
Last ObjectModification:
2017_07_26-PM-05_40_35
Theory : general
Home
Index