Nuprl Lemma : is_list_splitting_wf

[T:Type]. ∀[L:T List]. ∀[LL:T List List]. ∀[L2:T List]. ∀[f:(T List) ⟶ 𝔹].  (is_list_splitting(T;L;LL;L2;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  is_list_splitting: is_list_splitting(T;L;LL;L2;f) list: List bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is_list_splitting: is_list_splitting(T;L;LL;L2;f) prop: and: P ∧ Q top: Top so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a implies:  Q so_apply: x[s]
Lemmas referenced :  equal_wf list_wf append_wf concat_wf length_wf length-append l_all_wf2 not_wf assert_wf null_wf3 subtype_rel_list top_wf all_wf l_member_wf iseg_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache applyLambdaEquality isect_memberEquality voidElimination voidEquality lambdaEquality lambdaFormation setElimination rename applyEquality independent_isectElimination functionEquality setEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[LL:T  List  List].  \mforall{}[L2:T  List].  \mforall{}[f:(T  List)  {}\mrightarrow{}  \mBbbB{}].
    (is\_list\_splitting(T;L;LL;L2;f)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-08_04_30
Last ObjectModification: 2017_07_26-PM-05_40_35

Theory : general


Home Index