Nuprl Lemma : list_split_wf

[T:Type]. ∀[f:(T List) ⟶ 𝔹]. ∀[L:T List].
  (list_split(f;L) ∈ {p:T List List × (T List)| let LL,L2 in is_list_splitting(T;L;LL;L2;f)} )


Proof




Definitions occuring in Statement :  list_split: list_split(f;L) is_list_splitting: is_list_splitting(T;L;LL;L2;f) list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T bfalse: ff cons: [a b] true: True cand: c∧ B so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs concat: concat(ll) is_list_splitting: is_list_splitting(T;L;LL;L2;f) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] list_split: list_split(f;L) btrue: tt ifthenelse: if then else fi  assert: b uiff: uiff(P;Q) iseg: l1 ≤ l2 int_iseg: {i...j} iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) subtract: m less_than': less_than'(a;b) bool: 𝔹 unit: Unit it:
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self non_neg_length length_wf decidable__assert null_wf3 subtype_rel_list top_wf itermAdd_wf int_term_value_add_lemma istype-nat length_wf_nat list_wf bool_wf istype-universe length_of_cons_lemma null_cons_lemma product_subtype_list is_list_splitting_wf iseg_wf assert_wf l_all_nil list_ind_nil_lemma reduce_nil_lemma nil_wf list_accum_nil_lemma length_of_nil_lemma null_nil_lemma list-cases btrue_neq_bfalse append_is_nil not_assert_elim btrue_wf last-lemma-sq firstn_wf less_than_wf squash_wf true_wf length_firstn_eq subtract_nat_wf istype-false not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 subtract-is-int-iff false_wf iff_weakening_equal list_accum_append list_accum_cons_lemma cons_wf last_wf append-nil concat_wf equal_wf append_wf istype-assert iseg_single list_ind_cons_lemma ifthenelse_wf equal-wf-T-base bnot_wf not_wf length-append eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot concat-single concat_append bfalse_wf assert_elim l_all_cons all_wf l_all_append le_wf append_assoc iseg_append_single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType productElimination unionElimination applyEquality instantiate because_Cache applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption imageElimination addEquality isectIsTypeImplies functionIsType universeEquality promote_hyp baseClosed equalityIsType3 independent_pairEquality equalityIsType1 imageMemberEquality minusEquality equalityIstype pointwiseFunctionality baseApply closedConclusion productEquality equalityElimination functionEquality hyp_replacement intEquality equalityIsType4

Latex:
\mforall{}[T:Type].  \mforall{}[f:(T  List)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
    (list\_split(f;L)  \mmember{}  \{p:T  List  List  \mtimes{}  (T  List)|  let  LL,L2  =  p  in  is\_list\_splitting(T;L;LL;L2;f)\}  )



Date html generated: 2019_10_15-AM-11_15_40
Last ObjectModification: 2019_06_25-PM-02_35_09

Theory : general


Home Index