Nuprl Lemma : concat-single

[l:Top List]. (concat([l]) l)


Proof




Definitions occuring in Statement :  concat: concat(ll) cons: [a b] nil: [] list: List uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  concat: concat(ll) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  reduce_cons_lemma reduce_nil_lemma list_wf top_wf append-nil
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality

Latex:
\mforall{}[l:Top  List].  (concat([l])  \msim{}  l)



Date html generated: 2016_05_14-AM-06_32_43
Last ObjectModification: 2015_12_26-PM-00_37_30

Theory : list_0


Home Index