Nuprl Lemma : concat-single
∀[l:Top List]. (concat([l]) ~ l)
Proof
Definitions occuring in Statement : 
concat: concat(ll)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
concat: concat(ll)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
reduce_cons_lemma, 
reduce_nil_lemma, 
list_wf, 
top_wf, 
append-nil
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality
Latex:
\mforall{}[l:Top  List].  (concat([l])  \msim{}  l)
Date html generated:
2016_05_14-AM-06_32_43
Last ObjectModification:
2015_12_26-PM-00_37_30
Theory : list_0
Home
Index