Nuprl Lemma : iseg_single

[T:Type]. ∀L:T List. ∀x:T.  (L ≤ [x] ⇐⇒ (↑null(L)) ∨ (L [x] ∈ (T List)))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 null: null(as) cons: [a b] nil: [] list: List assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q or: P ∨ Q
Lemmas referenced :  iseg_append_single nil_wf list_ind_nil_lemma or_wf assert_wf null_wf equal_wf list_wf cons_wf iseg_nil iseg_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality hypothesis sqequalRule isect_memberEquality voidElimination voidEquality productElimination independent_pairFormation addLevel independent_functionElimination orFunctionality impliesFunctionality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    (L  \mleq{}  [x]  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}null(L))  \mvee{}  (L  =  [x]))



Date html generated: 2016_05_14-PM-03_02_51
Last ObjectModification: 2015_12_26-PM-01_55_40

Theory : list_1


Home Index