Nuprl Lemma : iseg_single
∀[T:Type]. ∀L:T List. ∀x:T.  (L ≤ [x] 
⇐⇒ (↑null(L)) ∨ (L = [x] ∈ (T List)))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
null: null(as)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
Lemmas referenced : 
iseg_append_single, 
nil_wf, 
list_ind_nil_lemma, 
or_wf, 
assert_wf, 
null_wf, 
equal_wf, 
list_wf, 
cons_wf, 
iseg_nil, 
iseg_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairFormation, 
addLevel, 
independent_functionElimination, 
orFunctionality, 
impliesFunctionality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    (L  \mleq{}  [x]  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}null(L))  \mvee{}  (L  =  [x]))
Date html generated:
2016_05_14-PM-03_02_51
Last ObjectModification:
2015_12_26-PM-01_55_40
Theory : list_1
Home
Index