Nuprl Lemma : list_split_inverse

[T:Type]. ∀[f:(T List) ⟶ 𝔹]. ∀[L:T List]. ∀[LL:T List List]. ∀[X:T List].
  (concat(LL) X) ∈ (T List) supposing list_split(f;L) = <LL, X> ∈ (T List List × (T List))


Proof




Definitions occuring in Statement :  list_split: list_split(f;L) concat: concat(ll) append: as bs list: List bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q subtype_rel: A ⊆B top: Top pi1: fst(t) pi2: snd(t) is_list_splitting: is_list_splitting(T;L;LL;L2;f) squash: T true: True
Lemmas referenced :  bool_wf true_wf squash_wf append_wf concat_wf equal_wf and_wf length_wf pi2_wf top_wf subtype_rel_product pi1_wf_top is_list_splitting_wf list_wf set_wf list_split_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis productEquality sqequalRule lambdaEquality spreadEquality lambdaFormation setElimination rename productElimination independent_pairFormation applyEquality because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality equalityUniverse levelHypothesis addLevel equalitySymmetry dependent_set_memberEquality setEquality imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed independent_pairEquality dependent_functionElimination independent_functionElimination axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:(T  List)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].  \mforall{}[LL:T  List  List].  \mforall{}[X:T  List].
    L  =  (concat(LL)  @  X)  supposing  list\_split(f;L)  =  <LL,  X>



Date html generated: 2016_05_15-PM-05_52_36
Last ObjectModification: 2016_01_16-PM-00_33_24

Theory : general


Home Index