Step
*
of Lemma
llex-linear
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
((∀a,b:A. (<[a;b] ∨ (a = b ∈ A) ∨ <[b;a]))
⇒ (∀L1,L2:A List. ((L1 llex(A;a,b.<[a;b]) L2) ∨ (L1 = L2 ∈ (A List)) ∨ (L2 llex(A;a,b.<[a;b]) L1))))
BY
{ xxxInductionOnListxxx }
1
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀a,b:A. (<[a;b] ∨ (a = b ∈ A) ∨ <[b;a])
⊢ ∀L2:A List. (([] llex(A;a,b.<[a;b]) L2) ∨ ([] = L2 ∈ (A List)) ∨ (L2 llex(A;a,b.<[a;b]) []))
2
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀a,b:A. (<[a;b] ∨ (a = b ∈ A) ∨ <[b;a])
4. u : A
5. v : A List
6. ∀L2:A List. ((v llex(A;a,b.<[a;b]) L2) ∨ (v = L2 ∈ (A List)) ∨ (L2 llex(A;a,b.<[a;b]) v))
⊢ ∀L2:A List. (([u / v] llex(A;a,b.<[a;b]) L2) ∨ ([u / v] = L2 ∈ (A List)) ∨ (L2 llex(A;a,b.<[a;b]) [u / v]))
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[<:A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}].
((\mforall{}a,b:A. (<[a;b] \mvee{} (a = b) \mvee{} <[b;a]))
{}\mRightarrow{} (\mforall{}L1,L2:A List. ((L1 llex(A;a,b.<[a;b]) L2) \mvee{} (L1 = L2) \mvee{} (L2 llex(A;a,b.<[a;b]) L1))))
By
Latex:
xxxInductionOnListxxx
Home
Index