Nuprl Lemma : llex-linear
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a,b:A.  (<[a;b] ∨ (a = b ∈ A) ∨ <[b;a]))
  
⇒ (∀L1,L2:A List.  ((L1 llex(A;a,b.<[a;b]) L2) ∨ (L1 = L2 ∈ (A List)) ∨ (L2 llex(A;a,b.<[a;b]) L1))))
Proof
Definitions occuring in Statement : 
llex: llex(A;a,b.<[a; b])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
guard: {T}
, 
infix_ap: x f y
, 
llex: llex(A;a,b.<[a; b])
, 
top: Top
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
uiff: uiff(P;Q)
, 
select: L[n]
, 
cons: [a / b]
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
or_wf, 
infix_ap_wf, 
llex_wf, 
equal_wf, 
nil-llex, 
nil_wf, 
equal-wf-base-T, 
cons_wf, 
length_of_cons_lemma, 
less_than_wf, 
length_wf, 
int_seg_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
non_neg_length, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
false_wf, 
le_wf, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nat_properties, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
exists_wf, 
nat_wf, 
select-cons-tl, 
subtract_wf, 
add-subtract-cancel, 
select_cons_tl, 
iff_weakening_equal, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
and_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
instantiate, 
because_Cache, 
applyEquality, 
universeEquality, 
functionExtensionality, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
functionEquality, 
unionElimination, 
inrFormation, 
inlFormation, 
equalitySymmetry, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
addEquality, 
natural_numberEquality, 
setElimination, 
independent_isectElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
imageMemberEquality, 
equalityTransitivity, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
imageElimination, 
hyp_replacement
Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:A.    (<[a;b]  \mvee{}  (a  =  b)  \mvee{}  <[b;a]))
    {}\mRightarrow{}  (\mforall{}L1,L2:A  List.    ((L1  llex(A;a,b.<[a;b])  L2)  \mvee{}  (L1  =  L2)  \mvee{}  (L2  llex(A;a,b.<[a;b])  L1))))
Date html generated:
2018_05_21-PM-07_17_47
Last ObjectModification:
2017_07_26-PM-05_04_29
Theory : general
Home
Index