Nuprl Lemma : llex-linear

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a,b:A.  (<[a;b] ∨ (a b ∈ A) ∨ <[b;a]))
   (∀L1,L2:A List.  ((L1 llex(A;a,b.<[a;b]) L2) ∨ (L1 L2 ∈ (A List)) ∨ (L2 llex(A;a,b.<[a;b]) L1))))


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) list: List uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] or: P ∨ Q guard: {T} infix_ap: y llex: llex(A;a,b.<[a; b]) top: Top and: P ∧ Q int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A ge: i ≥  le: A ≤ B nat: less_than': less_than'(a;b) cand: c∧ B nat_plus: + less_than: a < b squash: T true: True uiff: uiff(P;Q) select: L[n] cons: [a b] sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q subtract: m
Lemmas referenced :  list_induction all_wf list_wf or_wf infix_ap_wf llex_wf equal_wf nil-llex nil_wf equal-wf-base-T cons_wf length_of_cons_lemma less_than_wf length_wf int_seg_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf non_neg_length decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma false_wf le_wf add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties add-is-int-iff intformeq_wf int_formula_prop_eq_lemma nat_properties decidable__equal_int subtype_base_sq int_subtype_base exists_wf nat_wf select-cons-tl subtract_wf add-subtract-cancel select_cons_tl iff_weakening_equal add-associates add-swap add-commutes zero-add and_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis instantiate because_Cache applyEquality universeEquality functionExtensionality independent_functionElimination rename dependent_functionElimination functionEquality unionElimination inrFormation inlFormation equalitySymmetry baseClosed isect_memberEquality voidElimination voidEquality productEquality addEquality natural_numberEquality setElimination independent_isectElimination productElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll dependent_set_memberEquality imageMemberEquality equalityTransitivity applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion imageElimination hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:A.    (<[a;b]  \mvee{}  (a  =  b)  \mvee{}  <[b;a]))
    {}\mRightarrow{}  (\mforall{}L1,L2:A  List.    ((L1  llex(A;a,b.<[a;b])  L2)  \mvee{}  (L1  =  L2)  \mvee{}  (L2  llex(A;a,b.<[a;b])  L1))))



Date html generated: 2018_05_21-PM-07_17_47
Last ObjectModification: 2017_07_26-PM-05_04_29

Theory : general


Home Index