Nuprl Lemma : nil-llex
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].  ∀L:A List. ((L = [] ∈ (A List)) ∨ ([] llex(A;a,b.<[a;b]) L))
Proof
Definitions occuring in Statement : 
llex: llex(A;a,b.<[a; b])
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cons: [a / b]
, 
guard: {T}
, 
llex: llex(A;a,b.<[a; b])
, 
select: L[n]
, 
uimplies: b supposing a
, 
nil: []
, 
it: ⋅
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
false: False
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
list-cases, 
nil_wf, 
llex_wf, 
product_subtype_list, 
equal-wf-T-base, 
list_wf, 
cons_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
equal_wf, 
int_seg_properties, 
intformle_wf, 
int_formula_prop_le_lemma, 
int_seg_wf, 
exists_wf, 
nat_wf, 
length_wf, 
all_wf, 
equal-wf-base-T, 
select_wf, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
inlFormation, 
cumulativity, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
functionExtensionality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
inrFormation, 
baseClosed, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
independent_functionElimination, 
because_Cache, 
productEquality, 
addEquality
Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:A  List.  ((L  =  [])  \mvee{}  ([]  llex(A;a,b.<[a;b])  L))
Date html generated:
2018_05_21-PM-07_17_17
Last ObjectModification:
2017_07_26-PM-05_04_22
Theory : general
Home
Index