Nuprl Lemma : nil-llex

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].  ∀L:A List. ((L [] ∈ (A List)) ∨ ([] llex(A;a,b.<[a;b]) L))


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) nil: [] list: List uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T or: P ∨ Q prop: infix_ap: y so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] guard: {T} llex: llex(A;a,b.<[a; b]) select: L[n] uimplies: supposing a nil: [] it: top: Top and: P ∧ Q cand: c∧ B nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True implies:  Q decidable: Dec(P) false: False uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] nat: ge: i ≥  so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  list-cases nil_wf llex_wf product_subtype_list equal-wf-T-base list_wf cons_wf length_of_nil_lemma stuck-spread base_wf length_of_cons_lemma add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf int_seg_properties intformle_wf int_formula_prop_le_lemma int_seg_wf exists_wf nat_wf length_wf all_wf equal-wf-base-T select_wf nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination inlFormation cumulativity applyEquality sqequalRule lambdaEquality functionExtensionality promote_hyp hypothesis_subsumption productElimination inrFormation baseClosed functionEquality universeEquality independent_isectElimination isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename pointwiseFunctionality baseApply closedConclusion dependent_pairFormation int_eqEquality intEquality computeAll independent_functionElimination because_Cache productEquality addEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:A  List.  ((L  =  [])  \mvee{}  ([]  llex(A;a,b.<[a;b])  L))



Date html generated: 2018_05_21-PM-07_17_17
Last ObjectModification: 2017_07_26-PM-05_04_22

Theory : general


Home Index