Nuprl Lemma : llex_wf

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].  (llex(A;a,b.<[a;b]) ∈ (A List) ⟶ (A List) ⟶ ℙ)


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T llex: llex(A;a,b.<[a; b]) prop: and: P ∧ Q so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T so_apply: x[s] nat: ge: i ≥  so_apply: x[s1;s2] subtype_rel: A ⊆B
Lemmas referenced :  list_wf nat_properties nat_wf exists_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf equal_wf int_seg_wf all_wf length_wf less_than_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality cumulativity hypothesisEquality hypothesis because_Cache natural_numberEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination applyEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (llex(A;a,b.<[a;b])  \mmember{}  (A  List)  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_17_19
Last ObjectModification: 2016_01_16-AM-11_08_22

Theory : general


Home Index