Step
*
1
of Lemma
log-property
1. b : {i:ℤ| 1 < i}
2. x : ℕ
3. ∀x:ℕx. (b^log(b;x) ≤ x) ∧ x < b^log(b;x) + 1 supposing 0 < x
4. 0 < x
5. b ≤ x
⊢ (b^log(b;x ÷ b) + 1 ≤ x) ∧ x < b^(log(b;x ÷ b) + 1) + 1
BY
{ Assert ⌜0 < x ÷ b ∧ x ÷ b < x⌝⋅ }
1
.....assertion.....
1. b : {i:ℤ| 1 < i}
2. x : ℕ
3. ∀x:ℕx. (b^log(b;x) ≤ x) ∧ x < b^log(b;x) + 1 supposing 0 < x
4. 0 < x
5. b ≤ x
⊢ 0 < x ÷ b ∧ x ÷ b < x
2
1. b : {i:ℤ| 1 < i}
2. x : ℕ
3. ∀x:ℕx. (b^log(b;x) ≤ x) ∧ x < b^log(b;x) + 1 supposing 0 < x
4. 0 < x
5. b ≤ x
6. 0 < x ÷ b ∧ x ÷ b < x
⊢ (b^log(b;x ÷ b) + 1 ≤ x) ∧ x < b^(log(b;x ÷ b) + 1) + 1
Latex:
Latex:
1. b : \{i:\mBbbZ{}| 1 < i\}
2. x : \mBbbN{}
3. \mforall{}x:\mBbbN{}x. (b\^{}log(b;x) \mleq{} x) \mwedge{} x < b\^{}log(b;x) + 1 supposing 0 < x
4. 0 < x
5. b \mleq{} x
\mvdash{} (b\^{}log(b;x \mdiv{} b) + 1 \mleq{} x) \mwedge{} x < b\^{}(log(b;x \mdiv{} b) + 1) + 1
By
Latex:
Assert \mkleeneopen{}0 < x \mdiv{} b \mwedge{} x \mdiv{} b < x\mkleeneclose{}\mcdot{}
Home
Index