Step * 1 of Lemma longest-prefix_property2


1. [T] Type
2. List
3. (T List) ⟶ 𝔹
4. longest-prefix(P;L) ≤ L
5. longest-prefix(P;L) < supposing 0 < ||L||
6. ((longest-prefix(P;L) [] ∈ (T List)) ∧ (∀L':T List. (L' <  (¬↑(P L')))))
∨ ((↑(P longest-prefix(P;L))) ∧ (∀L':T List. (longest-prefix(P;L) < L'  L' <  (¬↑(P L')))))
7. L2 List
8. (longest-prefix(P;L) L2) ∈ (T List)
⊢ 0 < ||L2|| supposing 0 < ||L||
BY
ParallelOp (-4) }

1
1. Type
2. List
3. (T List) ⟶ 𝔹
4. longest-prefix(P;L) ≤ L
5. ((longest-prefix(P;L) [] ∈ (T List)) ∧ (∀L':T List. (L' <  (¬↑(P L')))))
∨ ((↑(P longest-prefix(P;L))) ∧ (∀L':T List. (longest-prefix(P;L) < L'  L' <  (¬↑(P L')))))
6. L2 List
7. (longest-prefix(P;L) L2) ∈ (T List)
8. 0 < ||L||
9. longest-prefix(P;L) < L
⊢ 0 < ||L2||


Latex:


Latex:

1.  [T]  :  Type
2.  L  :  T  List
3.  P  :  (T  List)  {}\mrightarrow{}  \mBbbB{}
4.  longest-prefix(P;L)  \mleq{}  L
5.  longest-prefix(P;L)  <  L  supposing  0  <  ||L||
6.  ((longest-prefix(P;L)  =  [])  \mwedge{}  (\mforall{}L':T  List.  (L'  <  L  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  L')))))
\mvee{}  ((\muparrow{}(P  longest-prefix(P;L)))  \mwedge{}  (\mforall{}L':T  List.  (longest-prefix(P;L)  <  L'  {}\mRightarrow{}  L'  <  L  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  L')))))
7.  L2  :  T  List
8.  L  =  (longest-prefix(P;L)  @  L2)
\mvdash{}  0  <  ||L2||  supposing  0  <  ||L||


By


Latex:
ParallelOp  (-4)




Home Index