Nuprl Lemma : longest-prefix_property2
∀[T:Type]
  ∀L:T List. ∀P:(T List) ⟶ 𝔹. ∀L2:T List.
    0 < ||L2|| supposing 0 < ||L||
    ∧ (∀L':T List. ([] < L' 
⇒ L' < L2 
⇒ (¬↑(P (longest-prefix(P;L) @ L')))))
    ∧ ((↑(P longest-prefix(P;L))) ∨ (↑null(longest-prefix(P;L)))) 
    supposing L = (longest-prefix(P;L) @ L2) ∈ (T List)
Proof
Definitions occuring in Statement : 
longest-prefix: longest-prefix(P;L)
, 
proper-iseg: L1 < L2
, 
length: ||as||
, 
null: null(as)
, 
append: as @ bs
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
listp: A List+
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
false: False
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
longest-prefix_property, 
equal_wf, 
list_wf, 
append_wf, 
longest-prefix_wf, 
subtype_rel_dep_function, 
bool_wf, 
listp_wf, 
subtype_rel_self, 
less_than_wf, 
length_wf, 
proper-iseg-length, 
length_wf_nat, 
nat_wf, 
length-append, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
false_wf, 
assert_wf, 
proper-iseg_wf, 
nil_wf, 
and_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
null_nil_lemma, 
btrue_wf, 
subtype_base_sq, 
bool_subtype_base, 
list_ind_nil_lemma, 
squash_wf, 
true_wf, 
proper-iseg-append, 
append-nil, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
axiomEquality, 
rename, 
productElimination, 
independent_pairFormation, 
cumulativity, 
because_Cache, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
functionEquality, 
universeEquality, 
natural_numberEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
unionElimination, 
imageElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
functionExtensionality, 
setEquality, 
instantiate, 
inrFormation, 
inlFormation, 
imageMemberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:(T  List)  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L2:T  List.
        0  <  ||L2||  supposing  0  <  ||L||
        \mwedge{}  (\mforall{}L':T  List.  ([]  <  L'  {}\mRightarrow{}  L'  <  L2  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  (longest-prefix(P;L)  @  L')))))
        \mwedge{}  ((\muparrow{}(P  longest-prefix(P;L)))  \mvee{}  (\muparrow{}null(longest-prefix(P;L)))) 
        supposing  L  =  (longest-prefix(P;L)  @  L2)
Date html generated:
2016_10_25-AM-10_47_17
Last ObjectModification:
2016_07_12-AM-06_56_06
Theory : general
Home
Index