Nuprl Lemma : longest-prefix_property
∀[T:Type]
  ∀L:T List. ∀P:(T List) ⟶ 𝔹.
    (longest-prefix(P;L) ≤ L
    ∧ longest-prefix(P;L) < L supposing 0 < ||L||
    ∧ (((longest-prefix(P;L) = [] ∈ (T List)) ∧ (∀L':T List. (L' < L 
⇒ (¬↑(P L')))))
      ∨ ((↑(P longest-prefix(P;L))) ∧ (∀L':T List. (longest-prefix(P;L) < L' 
⇒ L' < L 
⇒ (¬↑(P L')))))))
Proof
Definitions occuring in Statement : 
longest-prefix: longest-prefix(P;L)
, 
proper-iseg: L1 < L2
, 
iseg: l1 ≤ l2
, 
length: ||as||
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
listp: A List+
, 
istype: istype(T)
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
longest-prefix: longest-prefix(P;L)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
proper-iseg: L1 < L2
, 
iseg: l1 ≤ l2
, 
ge: i ≥ j 
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
bfalse: ff
, 
let: let, 
cons: [a / b]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
assert: ↑b
, 
true: True
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
append: as @ bs
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
lt_int: i <z j
, 
nil: []
, 
list_ind: list_ind, 
length: ||as||
, 
decidable: Dec(P)
Lemmas referenced : 
list_induction, 
list_wf, 
bool_wf, 
iseg_wf, 
longest-prefix_wf, 
subtype_rel_dep_function, 
listp_wf, 
less_than_wf, 
length_wf, 
proper-iseg_wf, 
equal-wf-T-base, 
length_of_nil_lemma, 
not_wf, 
assert_wf, 
null_nil_lemma, 
reduce_tl_nil_lemma, 
iseg_weakening, 
nil_wf, 
member-less_than, 
istype-less_than, 
proper-iseg-length, 
non_neg_length, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-assert, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
length_of_cons_lemma, 
cons_wf, 
list-cases, 
product_subtype_list, 
istype-universe, 
nil_iseg, 
equal-wf-base-T, 
btrue_neq_bfalse, 
top_wf, 
subtype_rel_list, 
null_wf3, 
equal_wf, 
and_wf, 
bfalse_wf, 
btrue_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_term_value_add_lemma, 
itermAdd_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
tl_wf, 
true_wf, 
iff_imp_equal_bool, 
int_subtype_base, 
assert_of_lt_int, 
cons-proper-iseg, 
all_wf, 
equal-wf-base, 
false_wf, 
or_wf, 
cons_iseg, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
iseg_nil
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
hypothesis, 
productEquality, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
universeIsType, 
independent_isectElimination, 
setElimination, 
rename, 
isectEquality, 
natural_numberEquality, 
unionEquality, 
baseClosed, 
applyLambdaEquality, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
imageElimination, 
productElimination, 
voidElimination, 
inlFormation_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
productIsType, 
functionIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
isectIsType, 
unionIsType, 
instantiate, 
universeEquality, 
sqequalBase, 
addEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
voidEquality, 
isect_memberEquality, 
lambdaFormation, 
equalityElimination, 
inrFormation_alt, 
cumulativity, 
intEquality, 
dependent_pairFormation, 
inrFormation, 
hyp_replacement, 
inlFormation
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:(T  List)  {}\mrightarrow{}  \mBbbB{}.
        (longest-prefix(P;L)  \mleq{}  L
        \mwedge{}  longest-prefix(P;L)  <  L  supposing  0  <  ||L||
        \mwedge{}  (((longest-prefix(P;L)  =  [])  \mwedge{}  (\mforall{}L':T  List.  (L'  <  L  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  L')))))
            \mvee{}  ((\muparrow{}(P  longest-prefix(P;L)))
                \mwedge{}  (\mforall{}L':T  List.  (longest-prefix(P;L)  <  L'  {}\mRightarrow{}  L'  <  L  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  L')))))))
Date html generated:
2020_05_20-AM-08_06_31
Last ObjectModification:
2019_11_27-PM-02_18_14
Theory : general
Home
Index