Nuprl Lemma : cons-proper-iseg
∀[T:Type]. ∀L1,L2:T List. ∀a,b:T.  ([a / L1] < [b / L2] 
⇐⇒ L1 < L2 ∧ (a = b ∈ T))
Proof
Definitions occuring in Statement : 
proper-iseg: L1 < L2
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
proper-iseg: L1 < L2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
top: Top
Lemmas referenced : 
iff_wf, 
cons_iseg, 
tl_wf, 
reduce_tl_cons_lemma, 
not_wf, 
iseg_wf, 
and_wf, 
list_wf, 
equal_wf, 
true_wf, 
squash_wf, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
setEquality, 
addLevel, 
impliesFunctionality, 
andLevelFunctionality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}a,b:T.    ([a  /  L1]  <  [b  /  L2]  \mLeftarrow{}{}\mRightarrow{}  L1  <  L2  \mwedge{}  (a  =  b))
Date html generated:
2016_05_14-PM-03_04_07
Last ObjectModification:
2016_01_15-AM-07_23_17
Theory : list_1
Home
Index