Nuprl Lemma : proper-iseg_wf
∀[T:Type]. ∀[L1,L2:T List]. (L1 < L2 ∈ ℙ{[1 | i 0]})
Proof
Definitions occuring in Statement :
proper-iseg: L1 < L2
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
proper-iseg: L1 < L2
Lemmas referenced :
and_wf,
iseg_wf,
not_wf,
equal_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L1,L2:T List]. (L1 < L2 \mmember{} \mBbbP{}\{[1 | i 0]\})
Date html generated:
2016_05_14-PM-03_03_56
Last ObjectModification:
2015_12_26-PM-01_55_21
Theory : list_1
Home
Index