Nuprl Lemma : proper-iseg-append

[T:Type]. ∀L1,L2,L3,L4:T List.  L1 L3 < L2 L4 ⇐⇒ L3 < L4 ∧ (L1 L2 ∈ (T List)) supposing ||L1|| ||L2|| ∈ ℤ


Proof




Definitions occuring in Statement :  proper-iseg: L1 < L2 length: ||as|| append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: and: P ∧ Q so_apply: x[s] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q rev_implies:  Q squash: T ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A true: True subtype_rel: A ⊆B guard: {T} decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) cand: c∧ B
Lemmas referenced :  list_induction all_wf list_wf isect_wf equal_wf length_wf iff_wf proper-iseg_wf append_wf equal-wf-base-T nil_wf length_of_nil_lemma list_ind_nil_lemma equal-wf-base length_of_cons_lemma list_ind_cons_lemma length_of_null_list non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf iff_weakening_equal cons_wf null_nil_lemma btrue_wf and_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse equal-wf-T-base cons-proper-iseg decidable__equal_int add-is-int-iff intformnot_wf int_formula_prop_not_lemma false_wf squash_wf true_wf reduce_tl_cons_lemma tl_wf reduce_hd_cons_lemma hd_wf ge_wf length_cons_ge_one subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache intEquality productEquality independent_functionElimination baseClosed dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry rename independent_pairFormation productElimination independent_isectElimination applyEquality imageElimination natural_numberEquality dependent_pairFormation int_eqEquality computeAll imageMemberEquality dependent_set_memberEquality applyLambdaEquality setElimination addEquality universeEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L3,L4:T  List.    L1  @  L3  <  L2  @  L4  \mLeftarrow{}{}\mRightarrow{}  L3  <  L4  \mwedge{}  (L1  =  L2)  supposing  ||L1||  =  ||L2||



Date html generated: 2017_04_17-AM-08_47_19
Last ObjectModification: 2017_02_27-PM-05_05_18

Theory : list_1


Home Index