Nuprl Lemma : proper-iseg-append
∀[T:Type]. ∀L1,L2,L3,L4:T List.  L1 @ L3 < L2 @ L4 
⇐⇒ L3 < L4 ∧ (L1 = L2 ∈ (T List)) supposing ||L1|| = ||L2|| ∈ ℤ
Proof
Definitions occuring in Statement : 
proper-iseg: L1 < L2
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
isect_wf, 
equal_wf, 
length_wf, 
iff_wf, 
proper-iseg_wf, 
append_wf, 
equal-wf-base-T, 
nil_wf, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
equal-wf-base, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
length_of_null_list, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
iff_weakening_equal, 
cons_wf, 
null_nil_lemma, 
btrue_wf, 
and_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
equal-wf-T-base, 
cons-proper-iseg, 
decidable__equal_int, 
add-is-int-iff, 
intformnot_wf, 
int_formula_prop_not_lemma, 
false_wf, 
squash_wf, 
true_wf, 
reduce_tl_cons_lemma, 
tl_wf, 
reduce_hd_cons_lemma, 
hd_wf, 
ge_wf, 
length_cons_ge_one, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
intEquality, 
productEquality, 
independent_functionElimination, 
baseClosed, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
independent_pairFormation, 
productElimination, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
imageMemberEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
addEquality, 
universeEquality, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L3,L4:T  List.    L1  @  L3  <  L2  @  L4  \mLeftarrow{}{}\mRightarrow{}  L3  <  L4  \mwedge{}  (L1  =  L2)  supposing  ||L1||  =  ||L2||
Date html generated:
2017_04_17-AM-08_47_19
Last ObjectModification:
2017_02_27-PM-05_05_18
Theory : list_1
Home
Index