Step * 1 2 1 2 1 of Lemma map-upto-length

.....subterm..... T:t
1:n
1. Type
2. T
3. List
4. ∀[f:ℕ||v|| ⟶ T]. map(f;upto(||v||)) ∈ (T List) supposing ∀i:ℕ||v||. ((f i) v[i] ∈ T)
5. : ℕ||v|| 1 ⟶ T
6. ∀i:ℕ||v|| 1. ((f i) [u v][i] ∈ T)
7. map(λi.(f (i 1));upto(||v||)) ∈ (T List)
⊢ (f 0) ∈ T
BY
xxx((InstHyp [⌜0⌝(-2))⋅ THEN Auto' THEN (Reduce (-1)) THEN Auto)xxx }


Latex:


Latex:
.....subterm.....  T:t
1:n
1.  T  :  Type
2.  u  :  T
3.  v  :  T  List
4.  \mforall{}[f:\mBbbN{}||v||  {}\mrightarrow{}  T].  v  =  map(f;upto(||v||))  supposing  \mforall{}i:\mBbbN{}||v||.  ((f  i)  =  v[i])
5.  f  :  \mBbbN{}||v||  +  1  {}\mrightarrow{}  T
6.  \mforall{}i:\mBbbN{}||v||  +  1.  ((f  i)  =  [u  /  v][i])
7.  v  =  map(\mlambda{}i.(f  (i  +  1));upto(||v||))
\mvdash{}  u  =  (f  0)


By


Latex:
xxx((InstHyp  [\mkleeneopen{}0\mkleeneclose{}]  (-2))\mcdot{}  THEN  Auto'  THEN  (Reduce  (-1))  THEN  Auto)xxx




Home Index