Nuprl Lemma : map-upto-length

[T:Type]. ∀[L:T List]. ∀[f:ℕ||L|| ⟶ T].  map(f;upto(||L||)) ∈ (T List) supposing ∀i:ℕ||L||. ((f i) L[i] ∈ T)


Proof




Definitions occuring in Statement :  upto: upto(n) select: L[n] length: ||as|| map: map(f;as) list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T so_apply: x[s] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff ge: i ≥  le: A ≤ B uiff: uiff(P;Q) subtract: m true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B nat: less_than': less_than'(a;b) btrue: tt cons: [a b] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nat_plus: + compose: g
Lemmas referenced :  list_induction uall_wf int_seg_wf length_wf isect_wf all_wf equal_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma list_wf map_wf upto_wf length_of_nil_lemma stuck-spread base_wf map_nil_lemma nil_wf equal-wf-T-base length_of_cons_lemma cons_wf non_neg_length itermAdd_wf int_term_value_add_lemma add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf squash_wf true_wf iff_weakening_equal select_cons_tl le_wf less_than_wf add-associates add-swap add-commutes zero-add add-subtract-cancel upto_decomp add_nat_wf length_wf_nat false_wf nat_wf nat_properties add-is-int-iff intformeq_wf int_formula_prop_eq_lemma map_append_sq map_cons_lemma list_ind_cons_lemma list_ind_nil_lemma add_nat_plus nat_plus_wf nat_plus_properties map-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality natural_numberEquality cumulativity hypothesis because_Cache applyEquality functionExtensionality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination baseClosed lambdaFormation axiomEquality equalityTransitivity equalitySymmetry addEquality universeEquality dependent_set_memberEquality imageMemberEquality productEquality minusEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\mBbbN{}||L||  {}\mrightarrow{}  T].
    L  =  map(f;upto(||L||))  supposing  \mforall{}i:\mBbbN{}||L||.  ((f  i)  =  L[i])



Date html generated: 2018_05_21-PM-07_37_11
Last ObjectModification: 2017_07_26-PM-05_11_06

Theory : general


Home Index