Step * 1 2 1 2 2 of Lemma map-upto-length

.....subterm..... T:t
2:n
1. Type
2. T
3. List
4. ∀[f:ℕ||v|| ⟶ T]. map(f;upto(||v||)) ∈ (T List) supposing ∀i:ℕ||v||. ((f i) v[i] ∈ T)
5. : ℕ||v|| 1 ⟶ T
6. ∀i:ℕ||v|| 1. ((f i) [u v][i] ∈ T)
7. map(λi.(f (i 1));upto(||v||)) ∈ (T List)
⊢ map(f;map(λx.(x 1);upto(||v||))) ∈ (T List)
BY
xxx(RWO "map-map" THEN Auto')xxx }

1
1. Type
2. T
3. List
4. ∀[f:ℕ||v|| ⟶ T]. map(f;upto(||v||)) ∈ (T List) supposing ∀i:ℕ||v||. ((f i) v[i] ∈ T)
5. : ℕ||v|| 1 ⟶ T
6. ∀i:ℕ||v|| 1. ((f i) [u v][i] ∈ T)
7. map(λi.(f (i 1));upto(||v||)) ∈ (T List)
⊢ map(f x.(x 1));upto(||v||)) ∈ (T List)


Latex:


Latex:
.....subterm.....  T:t
2:n
1.  T  :  Type
2.  u  :  T
3.  v  :  T  List
4.  \mforall{}[f:\mBbbN{}||v||  {}\mrightarrow{}  T].  v  =  map(f;upto(||v||))  supposing  \mforall{}i:\mBbbN{}||v||.  ((f  i)  =  v[i])
5.  f  :  \mBbbN{}||v||  +  1  {}\mrightarrow{}  T
6.  \mforall{}i:\mBbbN{}||v||  +  1.  ((f  i)  =  [u  /  v][i])
7.  v  =  map(\mlambda{}i.(f  (i  +  1));upto(||v||))
\mvdash{}  v  =  map(f;map(\mlambda{}x.(x  +  1);upto(||v||)))


By


Latex:
xxx(RWO  "map-map"  0  THEN  Auto')xxx




Home Index