Step
*
1
of Lemma
mklist-general-fun
.....upcase.....
1. T : Type
2. h : (T List) ⟶ T
3. n : ℤ
4. 0 < n
5. mklist-general(n - 1;h) ~ map(λn.mklist-general(n + 1;h)[n];upto(n - 1))
⊢ mklist-general(n;h) ~ map(λn.mklist-general(n + 1;h)[n];upto(n))
BY
{ (AbbreviateTerm map(λn.mklist-general(n + 1;h)[n];upto(n)) `hide'⋅
THEN RWO "mklist-general_add1" 0
THEN Auto
THEN HypSubst' (-1) 0
THEN Reduce 0
THEN (RWO "map-upto" 0 THENA Auto)) }
1
1. T : Type
2. h : (T List) ⟶ T
3. n : ℤ
4. 0 < n
5. mklist-general(n - 1;h) ~ map(λn.mklist-general(n + 1;h)[n];upto(n - 1))
6. hide : Base
7. hide ~ λn,h. map(λn.mklist-general(n + 1;h)[n];upto(n))
⊢ mklist-general(n - 1;h) @ [h mklist-general(n - 1;h)] ~ map(λn.mklist-general(n + 1;h)[n];upto(n - 1))
@ [(λn.mklist-general(n + 1;h)[n]) (n - 1)]
Latex:
Latex:
.....upcase.....
1. T : Type
2. h : (T List) {}\mrightarrow{} T
3. n : \mBbbZ{}
4. 0 < n
5. mklist-general(n - 1;h) \msim{} map(\mlambda{}n.mklist-general(n + 1;h)[n];upto(n - 1))
\mvdash{} mklist-general(n;h) \msim{} map(\mlambda{}n.mklist-general(n + 1;h)[n];upto(n))
By
Latex:
(AbbreviateTerm map(\mlambda{}n.mklist-general(n + 1;h)[n];upto(n)) `hide'\mcdot{}
THEN RWO "mklist-general\_add1" 0
THEN Auto
THEN HypSubst' (-1) 0
THEN Reduce 0
THEN (RWO "map-upto" 0 THENA Auto))
Home
Index