Nuprl Lemma : mklist-general-fun

[T:Type]. ∀[h:(T List) ⟶ T]. ∀[n:ℕ].  (mklist-general(n;h) map(λn.mklist-general(n 1;h)[n];upto(n)))


Proof




Definitions occuring in Statement :  upto: upto(n) mklist-general: mklist-general(n;h) select: L[n] map: map(f;as) list: List nat: uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff nil: [] it: sq_type: SQType(T) guard: {T} mklist-general: mklist-general(n;h) map: map(f;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] decidable: Dec(P) or: P ∨ Q nat_plus: + last: last(L)
Lemmas referenced :  mklist-general_wf last_append_singleton le_wf mklist-general-length subtract-add-cancel map-upto mklist-general_add1 list_wf nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le list_ind_nil_lemma primrec0_lemma int_seg_wf nil_wf int_subtype_base set_subtype_base list_subtype_base subtype_base_sq less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom instantiate because_Cache equalityTransitivity equalitySymmetry unionElimination functionEquality universeEquality baseClosed sqequalIntensionalEquality productElimination dependent_set_memberEquality cumulativity applyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[h:(T  List)  {}\mrightarrow{}  T].  \mforall{}[n:\mBbbN{}].
    (mklist-general(n;h)  \msim{}  map(\mlambda{}n.mklist-general(n  +  1;h)[n];upto(n)))



Date html generated: 2016_05_15-PM-04_35_45
Last ObjectModification: 2016_01_16-AM-11_17_45

Theory : general


Home Index