Nuprl Lemma : mklist-general-fun
∀[T:Type]. ∀[h:(T List) ⟶ T]. ∀[n:ℕ].  (mklist-general(n;h) ~ map(λn.mklist-general(n + 1;h)[n];upto(n)))
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
mklist-general: mklist-general(n;h)
, 
select: L[n]
, 
map: map(f;as)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
upto: upto(n)
, 
from-upto: [n, m)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bfalse: ff
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
guard: {T}
, 
mklist-general: mklist-general(n;h)
, 
map: map(f;as)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
last: last(L)
Lemmas referenced : 
mklist-general_wf, 
last_append_singleton, 
le_wf, 
mklist-general-length, 
subtract-add-cancel, 
map-upto, 
mklist-general_add1, 
list_wf, 
nat_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
list_ind_nil_lemma, 
primrec0_lemma, 
int_seg_wf, 
nil_wf, 
int_subtype_base, 
set_subtype_base, 
list_subtype_base, 
subtype_base_sq, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
functionEquality, 
universeEquality, 
baseClosed, 
sqequalIntensionalEquality, 
productElimination, 
dependent_set_memberEquality, 
cumulativity, 
applyEquality
Latex:
\mforall{}[T:Type].  \mforall{}[h:(T  List)  {}\mrightarrow{}  T].  \mforall{}[n:\mBbbN{}].
    (mklist-general(n;h)  \msim{}  map(\mlambda{}n.mklist-general(n  +  1;h)[n];upto(n)))
Date html generated:
2016_05_15-PM-04_35_45
Last ObjectModification:
2016_01_16-AM-11_17_45
Theory : general
Home
Index