Nuprl Lemma : last_append_singleton
∀[T:Type]. ∀L:T List. ∀a:T. (last(L @ [a]) ~ a)
Proof
Definitions occuring in Statement :
last: last(L)
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
top: Top
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
Lemmas referenced :
last_singleton_append,
subtype_rel_list,
top_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
dependent_functionElimination,
hypothesisEquality,
applyEquality,
hypothesis,
independent_isectElimination,
lambdaEquality,
because_Cache,
sqequalRule,
sqequalAxiom,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}L:T List. \mforall{}a:T. (last(L @ [a]) \msim{} a)
Date html generated:
2016_05_14-PM-02_08_38
Last ObjectModification:
2015_12_26-PM-05_06_29
Theory : list_1
Home
Index