Nuprl Lemma : map-upto

[n:ℕ+]. ∀[f:Top].  (map(f;upto(n)) map(f;upto(n 1)) [f (n 1)])


Proof




Definitions occuring in Statement :  upto: upto(n) map: map(f;as) append: as bs cons: [a b] nil: [] nat_plus: + uall: [x:A]. B[x] top: Top apply: a subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x]
Lemmas referenced :  upto_decomp1 map_append_sq map_cons_lemma map_nil_lemma top_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality dependent_functionElimination sqequalAxiom because_Cache

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:Top].    (map(f;upto(n))  \msim{}  map(f;upto(n  -  1))  @  [f  (n  -  1)])



Date html generated: 2016_05_15-PM-04_35_24
Last ObjectModification: 2015_12_27-PM-02_45_59

Theory : general


Home Index