Nuprl Lemma : map-upto
∀[n:ℕ+]. ∀[f:Top].  (map(f;upto(n)) ~ map(f;upto(n - 1)) @ [f (n - 1)])
Proof
Definitions occuring in Statement : 
upto: upto(n), 
map: map(f;as), 
append: as @ bs, 
cons: [a / b], 
nil: [], 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
subtract: n - m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
all: ∀x:A. B[x]
Lemmas referenced : 
upto_decomp1, 
map_append_sq, 
map_cons_lemma, 
map_nil_lemma, 
top_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:Top].    (map(f;upto(n))  \msim{}  map(f;upto(n  -  1))  @  [f  (n  -  1)])
Date html generated:
2016_05_15-PM-04_35_24
Last ObjectModification:
2015_12_27-PM-02_45_59
Theory : general
Home
Index