Step
*
2
2
of Lemma
mul-initial-seg-property
1. f : ℕ ⟶ ℕ
2. m : ℤ
3. [%1] : 0 < m
4. ∃n:ℕ. (n < m - 1 ∧ ((f n) = 0 ∈ ℤ))
⇐⇒ (mul-initial-seg(f) (m - 1)) = 0 ∈ ℤ
5. ¬((f (m - 1)) = 0 ∈ ℤ)
⊢ ∃n:ℕ. (n < m ∧ ((f n) = 0 ∈ ℤ))
⇐⇒ ((mul-initial-seg(f) (m - 1)) * (f (m - 1))) = 0 ∈ ℤ
BY
{ (ParallelOp (-2) THEN Try ((ParallelLast THEN Auto THEN (FLemma `int_entire` [-1] THENM D -1) THEN Auto)⋅)) }
1
.....antecedent.....
1. f : ℕ ⟶ ℕ
2. m : ℤ
3. 0 < m
4. ¬((f (m - 1)) = 0 ∈ ℤ)
5. ∃n:ℕ. (n < m ∧ ((f n) = 0 ∈ ℤ))
⊢ ∃n:ℕ. (n < m - 1 ∧ ((f n) = 0 ∈ ℤ))
Latex:
Latex:
1. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
2. m : \mBbbZ{}
3. [\%1] : 0 < m
4. \mexists{}n:\mBbbN{}. (n < m - 1 \mwedge{} ((f n) = 0)) \mLeftarrow{}{}\mRightarrow{} (mul-initial-seg(f) (m - 1)) = 0
5. \mneg{}((f (m - 1)) = 0)
\mvdash{} \mexists{}n:\mBbbN{}. (n < m \mwedge{} ((f n) = 0)) \mLeftarrow{}{}\mRightarrow{} ((mul-initial-seg(f) (m - 1)) * (f (m - 1))) = 0
By
Latex:
(ParallelOp (-2)
THEN Try ((ParallelLast THEN Auto THEN (FLemma `int\_entire` [-1] THENM D -1) THEN Auto)\mcdot{})
)
Home
Index