Nuprl Lemma : mul-initial-seg-property

f:ℕ ⟶ ℕ. ∀m:ℕ.  (∃n:ℕ(n < m ∧ ((f n) 0 ∈ ℤ)) ⇐⇒ (mul-initial-seg(f) m) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  mul-initial-seg: mul-initial-seg(f) nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q nat: so_apply: x[s] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top subtype_rel: A ⊆B mul-initial-seg: mul-initial-seg(f) upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff iff: ⇐⇒ Q ge: i ≥  rev_implies:  Q sq_type: SQType(T) guard: {T} true: True nat_plus: + squash: T cand: c∧ B
Lemmas referenced :  iff_wf exists_wf less_than_wf subtract_wf equal-wf-T-base decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf primrec-wf2 nat_wf mul-initial-seg_wf map_nil_lemma reduce_nil_lemma nat_properties subtype_base_sq int_subtype_base false_wf equal-wf-base decidable__equal_int squash_wf true_wf equal_wf mul-initial-seg-step iff_weakening_equal intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma decidable__lt int_entire
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality productEquality hypothesis hypothesisEquality natural_numberEquality applyEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed functionExtensionality functionEquality productElimination addLevel instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination levelHypothesis promote_hyp imageElimination universeEquality imageMemberEquality multiplyEquality baseApply closedConclusion

Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}m:\mBbbN{}.    (\mexists{}n:\mBbbN{}.  (n  <  m  \mwedge{}  ((f  n)  =  0))  \mLeftarrow{}{}\mRightarrow{}  (mul-initial-seg(f)  m)  =  0)



Date html generated: 2018_05_21-PM-08_37_50
Last ObjectModification: 2017_07_26-PM-06_02_07

Theory : general


Home Index