Nuprl Lemma : mul-initial-seg-property
∀f:ℕ ⟶ ℕ. ∀m:ℕ.  (∃n:ℕ. (n < m ∧ ((f n) = 0 ∈ ℤ)) ⇐⇒ (mul-initial-seg(f) m) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-initial-seg: mul-initial-seg(f), 
nat: ℕ, 
less_than: a < b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
nat: ℕ, 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
mul-initial-seg: mul-initial-seg(f), 
upto: upto(n), 
from-upto: [n, m), 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
ge: i ≥ j , 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
guard: {T}, 
true: True, 
nat_plus: ℕ+, 
squash: ↓T, 
cand: A c∧ B
Lemmas referenced : 
iff_wf, 
exists_wf, 
less_than_wf, 
subtract_wf, 
equal-wf-T-base, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
set_wf, 
primrec-wf2, 
nat_wf, 
mul-initial-seg_wf, 
map_nil_lemma, 
reduce_nil_lemma, 
nat_properties, 
subtype_base_sq, 
int_subtype_base, 
false_wf, 
equal-wf-base, 
decidable__equal_int, 
squash_wf, 
true_wf, 
equal_wf, 
mul-initial-seg-step, 
iff_weakening_equal, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
decidable__lt, 
int_entire
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
rename, 
setElimination, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseClosed, 
functionExtensionality, 
functionEquality, 
productElimination, 
addLevel, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
levelHypothesis, 
promote_hyp, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
multiplyEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}m:\mBbbN{}.    (\mexists{}n:\mBbbN{}.  (n  <  m  \mwedge{}  ((f  n)  =  0))  \mLeftarrow{}{}\mRightarrow{}  (mul-initial-seg(f)  m)  =  0)
Date html generated:
2018_05_21-PM-08_37_50
Last ObjectModification:
2017_07_26-PM-06_02_07
Theory : general
Home
Index