Nuprl Lemma : mul-initial-seg-step

[f:ℕ ⟶ ℕ]. ∀[m:ℕ+].  ((mul-initial-seg(f) m) ((mul-initial-seg(f) (m 1)) (f (m 1))) ∈ ℤ)


Proof




Definitions occuring in Statement :  mul-initial-seg: mul-initial-seg(f) nat_plus: + nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] multiply: m subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat_plus: + implies:  Q prop: nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] mul-initial-seg: mul-initial-seg(f) subtract: m upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff btrue: tt le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) true: True append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ge: i ≥  squash: T guard: {T}
Lemmas referenced :  nat_plus_properties equal_wf mul-initial-seg_wf nat_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf map_nil_lemma reduce_nil_lemma map_cons_lemma reduce_cons_lemma decidable__equal_int false_wf intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma add-subtract-cancel upto_decomp1 decidable__lt not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf map_append_sq map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat subtype_rel_self upto_wf list_wf list_induction all_wf reduce_wf append_wf cons_wf nil_wf list_ind_nil_lemma nat_properties list_ind_cons_lemma squash_wf true_wf iff_weakening_equal mul-associates
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination intEquality applyEquality functionExtensionality dependent_set_memberEquality because_Cache dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll multiplyEquality axiomEquality functionEquality callbyvalueReduce sqleReflexivity addEquality productElimination independent_functionElimination minusEquality equalityTransitivity equalitySymmetry imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((mul-initial-seg(f)  m)  =  ((mul-initial-seg(f)  (m  -  1))  *  (f  (m  -  1))))



Date html generated: 2018_05_21-PM-08_37_33
Last ObjectModification: 2017_07_26-PM-06_01_51

Theory : general


Home Index