Nuprl Lemma : mul-initial-seg-step
∀[f:ℕ ⟶ ℕ]. ∀[m:ℕ+].  ((mul-initial-seg(f) m) = ((mul-initial-seg(f) (m - 1)) * (f (m - 1))) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-initial-seg: mul-initial-seg(f)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
mul-initial-seg: mul-initial-seg(f)
, 
subtract: n - m
, 
upto: upto(n)
, 
from-upto: [n, m)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bfalse: ff
, 
btrue: tt
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
true: True
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
ge: i ≥ j 
, 
squash: ↓T
, 
guard: {T}
Lemmas referenced : 
nat_plus_properties, 
equal_wf, 
mul-initial-seg_wf, 
nat_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
nat_plus_wf, 
map_nil_lemma, 
reduce_nil_lemma, 
map_cons_lemma, 
reduce_cons_lemma, 
decidable__equal_int, 
false_wf, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
add-subtract-cancel, 
upto_decomp1, 
decidable__lt, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
map_append_sq, 
map_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
subtype_rel_self, 
upto_wf, 
list_wf, 
list_induction, 
all_wf, 
reduce_wf, 
append_wf, 
cons_wf, 
nil_wf, 
list_ind_nil_lemma, 
nat_properties, 
list_ind_cons_lemma, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
mul-associates
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
intEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
multiplyEquality, 
axiomEquality, 
functionEquality, 
callbyvalueReduce, 
sqleReflexivity, 
addEquality, 
productElimination, 
independent_functionElimination, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((mul-initial-seg(f)  m)  =  ((mul-initial-seg(f)  (m  -  1))  *  (f  (m  -  1))))
Date html generated:
2018_05_21-PM-08_37_33
Last ObjectModification:
2017_07_26-PM-06_01_51
Theory : general
Home
Index