Nuprl Lemma : mul-initial-seg_wf

[f:ℕ ⟶ ℕ]. (mul-initial-seg(f) ∈ ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  mul-initial-seg: mul-initial-seg(f) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mul-initial-seg: mul-initial-seg(f) nat: prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  reduce_wf nat_wf mul_bounds_1a le_wf false_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat subtype_rel_self upto_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache dependent_set_memberEquality multiplyEquality setElimination rename hypothesisEquality natural_numberEquality independent_pairFormation lambdaFormation applyEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  (mul-initial-seg(f)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2016_05_15-PM-06_36_55
Last ObjectModification: 2015_12_27-AM-11_54_58

Theory : general


Home Index