Step
*
2
of Lemma
mul-initial-seg-step
.....upcase.....
1. f : ℕ ⟶ ℕ
2. m : ℤ
3. 0 < m
4. (mul-initial-seg(f) m) = ((mul-initial-seg(f) (m - 1)) * (f (m - 1))) ∈ ℤ
⊢ (mul-initial-seg(f) (m + 1)) = ((mul-initial-seg(f) ((m + 1) - 1)) * (f ((m + 1) - 1))) ∈ ℤ
BY
{ xxx((Subst' (m + 1) - 1 ~ m 0 THENA Auto)
THEN RepUR ``mul-initial-seg`` 0⋅
THEN (RW (AddrC [2;3;2] (LemmaC `upto_decomp1`)) 0 THENA Auto)
THEN (Subst' (m + 1) - 1 ~ m 0 THENA Auto)
THEN (RWO "map_append_sq" 0⋅ THENA Auto)
THEN Reduce 0
THEN (GenConcl ⌜map(f;upto(m)) = L ∈ (ℕ List)⌝⋅ THENA Auto)
THEN (GenConcl ⌜(f m) = x ∈ ℕ⌝⋅ THENA Auto)
THEN All Thin)xxx }
1
1. L : ℕ List
2. x : ℕ
⊢ reduce(λx,y. (x * y);1;L @ [x]) = (reduce(λx,y. (x * y);1;L) * x) ∈ ℤ
Latex:
Latex:
.....upcase.....
1. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
2. m : \mBbbZ{}
3. 0 < m
4. (mul-initial-seg(f) m) = ((mul-initial-seg(f) (m - 1)) * (f (m - 1)))
\mvdash{} (mul-initial-seg(f) (m + 1)) = ((mul-initial-seg(f) ((m + 1) - 1)) * (f ((m + 1) - 1)))
By
Latex:
xxx((Subst' (m + 1) - 1 \msim{} m 0 THENA Auto)
THEN RepUR ``mul-initial-seg`` 0\mcdot{}
THEN (RW (AddrC [2;3;2] (LemmaC `upto\_decomp1`)) 0 THENA Auto)
THEN (Subst' (m + 1) - 1 \msim{} m 0 THENA Auto)
THEN (RWO "map\_append\_sq" 0\mcdot{} THENA Auto)
THEN Reduce 0
THEN (GenConcl \mkleeneopen{}map(f;upto(m)) = L\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConcl \mkleeneopen{}(f m) = x\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin)xxx
Home
Index