Step
*
of Lemma
next_wf_bound
∀[b:ℕ]. ∀[k:ℤ]. ∀[p:{i:ℤ| k < i} ⟶ 𝔹].
(next i > k s.t. ↑p[i]) ∈ {i:ℤ| (k < i ∧ (i ≤ (k + b))) ∧ (↑p[i]) ∧ (∀j:{k + 1..i-}. (¬↑p[j]))}
supposing ∃n:{i:ℤ| k < i ∧ (i ≤ (k + b))} . (↑p[n])
BY
{ InductionOnNat }
1
.....basecase.....
1. b : ℤ
⊢ ∀[k:ℤ]. ∀[p:{i:ℤ| k < i} ⟶ 𝔹].
(next i > k s.t. ↑p[i]) ∈ {i:ℤ| (k < i ∧ (i ≤ (k + 0))) ∧ (↑p[i]) ∧ (∀j:{k + 1..i-}. (¬↑p[j]))}
supposing ∃n:{i:ℤ| k < i ∧ (i ≤ (k + 0))} . (↑p[n])
2
.....upcase.....
1. b : ℤ
2. 0 < b
3. ∀[k:ℤ]. ∀[p:{i:ℤ| k < i} ⟶ 𝔹].
(next i > k s.t. ↑p[i]) ∈ {i:ℤ| (k < i ∧ (i ≤ (k + (b - 1)))) ∧ (↑p[i]) ∧ (∀j:{k + 1..i-}. (¬↑p[j]))}
supposing ∃n:{i:ℤ| k < i ∧ (i ≤ (k + (b - 1)))} . (↑p[n])
⊢ ∀[k:ℤ]. ∀[p:{i:ℤ| k < i} ⟶ 𝔹].
(next i > k s.t. ↑p[i]) ∈ {i:ℤ| (k < i ∧ (i ≤ (k + b))) ∧ (↑p[i]) ∧ (∀j:{k + 1..i-}. (¬↑p[j]))}
supposing ∃n:{i:ℤ| k < i ∧ (i ≤ (k + b))} . (↑p[n])
Latex:
Latex:
\mforall{}[b:\mBbbN{}]. \mforall{}[k:\mBbbZ{}]. \mforall{}[p:\{i:\mBbbZ{}| k < i\} {}\mrightarrow{} \mBbbB{}].
(next i > k s.t. \muparrow{}p[i]) \mmember{} \{i:\mBbbZ{}| (k < i \mwedge{} (i \mleq{} (k + b))) \mwedge{} (\muparrow{}p[i]) \mwedge{} (\mforall{}j:\{k + 1..i\msupminus{}\}. (\mneg{}\muparrow{}p[j]))\}
supposing \mexists{}n:\{i:\mBbbZ{}| k < i \mwedge{} (i \mleq{} (k + b))\} . (\muparrow{}p[n])
By
Latex:
InductionOnNat
Home
Index