Nuprl Lemma : next_wf_bound
∀[b:ℕ]. ∀[k:ℤ]. ∀[p:{i:ℤ| k < i}  ⟶ 𝔹].
  (next i > k s.t. ↑p[i]) ∈ {i:ℤ| (k < i ∧ (i ≤ (k + b))) ∧ (↑p[i]) ∧ (∀j:{k + 1..i-}. (¬↑p[j]))}  
  supposing ∃n:{i:ℤ| k < i ∧ (i ≤ (k + b))} . (↑p[n])
Proof
Definitions occuring in Statement : 
next: (next i > k s.t. ↑p[i])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
next: (next i > k s.t. ↑p[i])
, 
has-value: (a)↓
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
cand: A c∧ B
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_type: SQType(T)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
label: ...$L... t
, 
less_than: a < b
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
exists_wf, 
le_wf, 
assert_wf, 
bool_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
value-type-has-value, 
int-value-type, 
int_seg_properties, 
subtype_rel_sets, 
lelt_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
all_wf, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel, 
subtype_rel_dep_function, 
less-iff-le, 
add-associates, 
subtype_rel_self, 
set_wf, 
add-is-int-iff, 
int_subtype_base, 
decidable__equal_int, 
assert_elim, 
subtype_base_sq, 
not_assert_elim, 
btrue_neq_bfalse, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
sq_stable__and, 
sq_stable__less_than, 
sq_stable__le, 
less_than'_wf, 
squash_wf, 
assert_functionality_wrt_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
productEquality, 
addEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
productElimination, 
functionEquality, 
unionElimination, 
because_Cache, 
callbyvalueReduce, 
baseClosed, 
equalityElimination, 
minusEquality, 
baseApply, 
closedConclusion, 
instantiate, 
cumulativity, 
independent_pairEquality, 
imageMemberEquality, 
imageElimination, 
addLevel, 
impliesFunctionality, 
levelHypothesis
Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[k:\mBbbZ{}].  \mforall{}[p:\{i:\mBbbZ{}|  k  <  i\}    {}\mrightarrow{}  \mBbbB{}].
    (next  i  >  k  s.t.  \muparrow{}p[i])  \mmember{}  \{i:\mBbbZ{}|  (k  <  i  \mwedge{}  (i  \mleq{}  (k  +  b)))  \mwedge{}  (\muparrow{}p[i])  \mwedge{}  (\mforall{}j:\{k  +  1..i\msupminus{}\}.  (\mneg{}\muparrow{}p[j]))\}   
    supposing  \mexists{}n:\{i:\mBbbZ{}|  k  <  i  \mwedge{}  (i  \mleq{}  (k  +  b))\}  .  (\muparrow{}p[n])
Date html generated:
2018_05_21-PM-06_54_54
Last ObjectModification:
2017_07_26-PM-04_59_16
Theory : general
Home
Index