Nuprl Lemma : next_wf_bound

[b:ℕ]. ∀[k:ℤ]. ∀[p:{i:ℤk < i}  ⟶ 𝔹].
  (next i > s.t. ↑p[i]) ∈ {i:ℤ(k < i ∧ (i ≤ (k b))) ∧ (↑p[i]) ∧ (∀j:{k 1..i-}. (¬↑p[j]))}  
  supposing ∃n:{i:ℤk < i ∧ (i ≤ (k b))} (↑p[n])


Proof




Definitions occuring in Statement :  next: (next i > s.t. ↑p[i]) int_seg: {i..j-} nat: assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q next: (next i > s.t. ↑p[i]) has-value: (a)↓ bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff cand: c∧ B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True sq_type: SQType(T) sq_stable: SqStable(P) squash: T label: ...$L... t less_than: a < b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf exists_wf le_wf assert_wf bool_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf itermAdd_wf int_term_value_add_lemma decidable__lt equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot equal_wf value-type-has-value int-value-type int_seg_properties subtype_rel_sets lelt_wf less_than_transitivity1 less_than_irreflexivity int_seg_wf all_wf false_wf not-lt-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel subtype_rel_dep_function less-iff-le add-associates subtype_rel_self set_wf add-is-int-iff int_subtype_base decidable__equal_int assert_elim subtype_base_sq not_assert_elim btrue_neq_bfalse intformeq_wf int_formula_prop_eq_lemma sq_stable__and sq_stable__less_than sq_stable__le less_than'_wf squash_wf assert_functionality_wrt_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry setEquality productEquality addEquality applyEquality functionExtensionality dependent_set_memberEquality productElimination functionEquality unionElimination because_Cache callbyvalueReduce baseClosed equalityElimination minusEquality baseApply closedConclusion instantiate cumulativity independent_pairEquality imageMemberEquality imageElimination addLevel impliesFunctionality levelHypothesis

Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[k:\mBbbZ{}].  \mforall{}[p:\{i:\mBbbZ{}|  k  <  i\}    {}\mrightarrow{}  \mBbbB{}].
    (next  i  >  k  s.t.  \muparrow{}p[i])  \mmember{}  \{i:\mBbbZ{}|  (k  <  i  \mwedge{}  (i  \mleq{}  (k  +  b)))  \mwedge{}  (\muparrow{}p[i])  \mwedge{}  (\mforall{}j:\{k  +  1..i\msupminus{}\}.  (\mneg{}\muparrow{}p[j]))\}   
    supposing  \mexists{}n:\{i:\mBbbZ{}|  k  <  i  \mwedge{}  (i  \mleq{}  (k  +  b))\}  .  (\muparrow{}p[n])



Date html generated: 2018_05_21-PM-06_54_54
Last ObjectModification: 2017_07_26-PM-04_59_16

Theory : general


Home Index