Nuprl Lemma : nim_sum0_lemma
∀y:Top. (nim-sum(0;y) ~ y)
Proof
Definitions occuring in Statement : 
nim-sum: nim-sum(x;y)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nim-sum: nim-sum(x;y)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalRule
Latex:
\mforall{}y:Top.  (nim-sum(0;y)  \msim{}  y)
Date html generated:
2018_05_21-PM-09_10_11
Last ObjectModification:
2018_05_19-PM-05_11_57
Theory : general
Home
Index