Nuprl Lemma : nim_sum0_lemma

y:Top. (nim-sum(0;y) y)


Proof




Definitions occuring in Statement :  nim-sum: nim-sum(x;y) top: Top all: x:A. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nim-sum: nim-sum(x;y)
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule

Latex:
\mforall{}y:Top.  (nim-sum(0;y)  \msim{}  y)



Date html generated: 2018_05_21-PM-09_10_11
Last ObjectModification: 2018_05_19-PM-05_11_57

Theory : general


Home Index