Step
*
2
2
of Lemma
p-fun-exp-add-sq
1. A : Type
2. f : A ⟶ (A + Top)
3. x : A
4. m : ℤ
5. 0 < m
6. ∀[n:ℕ]. f^n + (m - 1) x ~ f^n do-apply(f^m - 1;x) supposing ↑can-apply(f^m - 1;x)
7. n : ℕ
8. ↑can-apply(f^m;x)
9. ¬(n = 0 ∈ ℤ)
⊢ f^n + m x ~ f^n do-apply(f^m;x)
BY
{ xxx(Unfold `p-fun-exp` 0
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN RepeatFor 3 ((SplitOnConclITE THENA Auto))
THEN Try (Complete (Auto'))
THEN Reduce 0
THEN Fold `p-fun-exp` 0)xxx }
1
1. A : Type
2. f : A ⟶ (A + Top)
3. x : A
4. m : ℤ
5. 0 < m
6. ∀[n:ℕ]. f^n + (m - 1) x ~ f^n do-apply(f^m - 1;x) supposing ↑can-apply(f^m - 1;x)
7. n : ℕ
8. ↑can-apply(f^m;x)
9. ¬(n = 0 ∈ ℤ)
10. 1 ≤ (n + m)
11. 1 ≤ n
12. 1 ≤ m
⊢ f o f^(n + m) - 1 x ~ f o f^n - 1 do-apply(f o f^m - 1;x)
Latex:
Latex:
1. A : Type
2. f : A {}\mrightarrow{} (A + Top)
3. x : A
4. m : \mBbbZ{}
5. 0 < m
6. \mforall{}[n:\mBbbN{}]. f\^{}n + (m - 1) x \msim{} f\^{}n do-apply(f\^{}m - 1;x) supposing \muparrow{}can-apply(f\^{}m - 1;x)
7. n : \mBbbN{}
8. \muparrow{}can-apply(f\^{}m;x)
9. \mneg{}(n = 0)
\mvdash{} f\^{}n + m x \msim{} f\^{}n do-apply(f\^{}m;x)
By
Latex:
xxx(Unfold `p-fun-exp` 0
THEN (RWO "primrec-unroll" 0 THENA Auto)
THEN RepeatFor 3 ((SplitOnConclITE THENA Auto))
THEN Try (Complete (Auto'))
THEN Reduce 0
THEN Fold `p-fun-exp` 0)xxx
Home
Index