Nuprl Lemma : p-fun-exp-add-sq
∀[A:Type]. ∀[f:A ⟶ (A + Top)]. ∀[x:A]. ∀[m,n:ℕ].  f^n + m x ~ f^n do-apply(f^m;x) supposing ↑can-apply(f^m;x)
Proof
Definitions occuring in Statement : 
p-fun-exp: f^n
, 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
add: n + m
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
p-fun-exp: f^n
, 
do-apply: do-apply(f;x)
, 
p-id: p-id()
, 
outl: outl(x)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
p-compose: f o g
, 
can-apply: can-apply(f;x)
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
assert_wf, 
can-apply_wf, 
p-fun-exp_wf, 
false_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
top_wf, 
subtype_rel_dep_function, 
subtype_rel_union, 
primrec0_lemma, 
add-zero, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
zero-add, 
inl-do-apply, 
lt_int_wf, 
bool_wf, 
equal-wf-T-base, 
equal-wf-base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_int_wf, 
bnot_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
primrec-unroll, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
can-apply-fun-exp, 
not_wf, 
assert_of_bnot, 
do-apply_wf, 
p-fun-exp-add1-sq, 
bool_subtype_base, 
isl_wf, 
squash_wf, 
true_wf, 
p-compose_wf, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
sqequalAxiom, 
cumulativity, 
because_Cache, 
functionExtensionality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
unionElimination, 
functionEquality, 
unionEquality, 
universeEquality, 
instantiate, 
addEquality, 
baseClosed, 
baseApply, 
closedConclusion, 
equalityElimination, 
productElimination, 
imageElimination, 
imageMemberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[x:A].  \mforall{}[m,n:\mBbbN{}].
    f\^{}n  +  m  x  \msim{}  f\^{}n  do-apply(f\^{}m;x)  supposing  \muparrow{}can-apply(f\^{}m;x)
Date html generated:
2018_05_21-PM-06_29_39
Last ObjectModification:
2018_05_19-PM-04_40_42
Theory : general
Home
Index