Nuprl Lemma : p-fun-exp-add-sq

[A:Type]. ∀[f:A ⟶ (A Top)]. ∀[x:A]. ∀[m,n:ℕ].  f^n f^n do-apply(f^m;x) supposing ↑can-apply(f^m;x)


Proof




Definitions occuring in Statement :  p-fun-exp: f^n do-apply: do-apply(f;x) can-apply: can-apply(f;x) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a function: x:A ⟶ B[x] union: left right add: m universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] p-fun-exp: f^n do-apply: do-apply(f;x) p-id: p-id() outl: outl(x) sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff p-compose: g can-apply: can-apply(f;x) squash: T true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_wf can-apply_wf p-fun-exp_wf false_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf top_wf subtype_rel_dep_function subtype_rel_union primrec0_lemma add-zero decidable__equal_int subtype_base_sq int_subtype_base zero-add inl-do-apply lt_int_wf bool_wf equal-wf-T-base equal-wf-base intformeq_wf int_formula_prop_eq_lemma le_int_wf bnot_wf itermAdd_wf int_term_value_add_lemma primrec-unroll uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf can-apply-fun-exp not_wf assert_of_bnot do-apply_wf p-fun-exp-add1-sq bool_subtype_base isl_wf squash_wf true_wf p-compose_wf subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation sqequalAxiom cumulativity because_Cache functionExtensionality applyEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination functionEquality unionEquality universeEquality instantiate addEquality baseClosed baseApply closedConclusion equalityElimination productElimination imageElimination imageMemberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[x:A].  \mforall{}[m,n:\mBbbN{}].
    f\^{}n  +  m  x  \msim{}  f\^{}n  do-apply(f\^{}m;x)  supposing  \muparrow{}can-apply(f\^{}m;x)



Date html generated: 2018_05_21-PM-06_29_39
Last ObjectModification: 2018_05_19-PM-04_40_42

Theory : general


Home Index