Nuprl Lemma : p-fun-exp-add1-sq

[A:Type]. ∀[f:A ⟶ (A Top)]. ∀[x:A]. ∀[n:ℕ].  f^n f^n do-apply(f;x) supposing ↑can-apply(f;x)


Proof




Definitions occuring in Statement :  p-fun-exp: f^n do-apply: do-apply(f;x) can-apply: can-apply(f;x) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a function: x:A ⟶ B[x] union: left right add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  do-apply: do-apply(f;x) can-apply: can-apply(f;x) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q isl: isl(x) p-fun-exp: f^n top: Top nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: p-id: p-id() p-compose: g outl: outl(x) ifthenelse: if then else fi  btrue: tt assert: b bfalse: ff subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  istype-assert btrue_wf bfalse_wf istype-nat istype-top istype-universe simple-primrec-add istype-void istype-le primrec1_lemma nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than primrec0_lemma subtract-1-ge-0 istype-true not_wf bnot_wf assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf primrec-unroll uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf int_formula_prop_eq_lemma intformeq_wf satisfiable-full-omega-tt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut hypothesis axiomSqEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality inhabitedIsType lambdaFormation_alt unionElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isect_memberEquality_alt isectIsTypeImplies universeIsType functionIsType unionIsType because_Cache instantiate universeEquality voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation promote_hyp setElimination rename intWeakElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality functionIsTypeImplies intEquality baseClosed closedConclusion baseApply voidEquality isect_memberEquality lambdaFormation equalityElimination productElimination impliesFunctionality computeAll lambdaEquality dependent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[x:A].  \mforall{}[n:\mBbbN{}].
    f\^{}n  +  1  x  \msim{}  f\^{}n  do-apply(f;x)  supposing  \muparrow{}can-apply(f;x)



Date html generated: 2019_10_15-AM-11_07_44
Last ObjectModification: 2019_06_26-PM-04_19_11

Theory : general


Home Index