Nuprl Lemma : p-fun-exp-add1-sq
∀[A:Type]. ∀[f:A ⟶ (A + Top)]. ∀[x:A]. ∀[n:ℕ].  f^n + 1 x ~ f^n do-apply(f;x) supposing ↑can-apply(f;x)
Proof
Definitions occuring in Statement : 
p-fun-exp: f^n
, 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
isl: isl(x)
, 
p-fun-exp: f^n
, 
top: Top
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
p-id: p-id()
, 
p-compose: f o g
, 
outl: outl(x)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
assert: ↑b
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
istype-assert, 
btrue_wf, 
bfalse_wf, 
istype-nat, 
istype-top, 
istype-universe, 
simple-primrec-add, 
istype-void, 
istype-le, 
primrec1_lemma, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
primrec0_lemma, 
subtract-1-ge-0, 
istype-true, 
not_wf, 
bnot_wf, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
bool_wf, 
eq_int_wf, 
primrec-unroll, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
satisfiable-full-omega-tt
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
axiomSqEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
functionIsType, 
unionIsType, 
because_Cache, 
instantiate, 
universeEquality, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
promote_hyp, 
setElimination, 
rename, 
intWeakElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
functionIsTypeImplies, 
intEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
voidEquality, 
isect_memberEquality, 
lambdaFormation, 
equalityElimination, 
productElimination, 
impliesFunctionality, 
computeAll, 
lambdaEquality, 
dependent_pairFormation
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[x:A].  \mforall{}[n:\mBbbN{}].
    f\^{}n  +  1  x  \msim{}  f\^{}n  do-apply(f;x)  supposing  \muparrow{}can-apply(f;x)
Date html generated:
2019_10_15-AM-11_07_44
Last ObjectModification:
2019_06_26-PM-04_19_11
Theory : general
Home
Index