Nuprl Lemma : simple-primrec-add

[b,F:Top]. ∀[n,m:ℕ].  (primrec(n m;b;λi.F) primrec(n;primrec(m;b;λi.F);λi.F))


Proof




Definitions occuring in Statement :  primrec: primrec(n;b;c) nat: uall: [x:A]. B[x] top: Top lambda: λx.A[x] add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b nat_plus: + less_than: a < b squash: T
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf primrec0_lemma zero-add decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf top_wf eq_int_wf bool_wf equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int le_weakening eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity bnot_wf not_wf equal-wf-base int_subtype_base iff_weakening_uiff assert_of_bnot minus-zero add-mul-special zero-mul not-equal-implies-less subtype_rel_self le_reflexive one-mul two-mul mul-distributes-right omega-shadow mul-associates general_arith_equation1 primrec-unroll uiff_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom because_Cache voidEquality unionElimination independent_pairFormation productElimination addEquality applyEquality intEquality minusEquality equalityTransitivity equalitySymmetry baseClosed equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality multiplyEquality dependent_set_memberEquality imageMemberEquality baseApply closedConclusion

Latex:
\mforall{}[b,F:Top].  \mforall{}[n,m:\mBbbN{}].    (primrec(n  +  m;b;\mlambda{}i.F)  \msim{}  primrec(n;primrec(m;b;\mlambda{}i.F);\mlambda{}i.F))



Date html generated: 2017_04_14-AM-07_25_50
Last ObjectModification: 2017_02_27-PM-02_55_37

Theory : call!by!value_2


Home Index