Nuprl Lemma : can-apply-fun-exp

[A:Type]. ∀[f:A ⟶ (A Top)]. ∀[n:ℕ]. ∀[y:A].  ∀[m:ℕ]. ↑can-apply(f^m;y) supposing m ≤ supposing ↑can-apply(f^n;y)


Proof




Definitions occuring in Statement :  p-fun-exp: f^n can-apply: can-apply(f;x) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top le: A ≤ B function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  can-apply: can-apply(f;x) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} p-fun-exp: f^n p-id: p-id() isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True le: A ≤ B less_than': less_than'(a;b) squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) p-compose: g do-apply: do-apply(f;x) outl: outl(x) bfalse: ff
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness isl_wf top_wf p-fun-exp_wf le_wf assert_wf decidable__equal_int subtype_base_sq int_subtype_base primrec0_lemma intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma false_wf decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtract-add-cancel assert_functionality_wrt_uiff p-compose_wf squash_wf true_wf p-fun-exp-add nat_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination cumulativity applyEquality functionExtensionality equalityTransitivity equalitySymmetry because_Cache unionElimination instantiate dependent_set_memberEquality addEquality imageElimination unionEquality universeEquality imageMemberEquality baseClosed productElimination addLevel impliesFunctionality functionEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[n:\mBbbN{}].  \mforall{}[y:A].
    \mforall{}[m:\mBbbN{}].  \muparrow{}can-apply(f\^{}m;y)  supposing  m  \mleq{}  n  supposing  \muparrow{}can-apply(f\^{}n;y)



Date html generated: 2017_10_01-AM-09_15_05
Last ObjectModification: 2017_07_26-PM-04_49_53

Theory : general


Home Index