Nuprl Lemma : can-apply-fun-exp
∀[A:Type]. ∀[f:A ⟶ (A + Top)]. ∀[n:ℕ]. ∀[y:A].  ∀[m:ℕ]. ↑can-apply(f^m;y) supposing m ≤ n supposing ↑can-apply(f^n;y)
Proof
Definitions occuring in Statement : 
p-fun-exp: f^n
, 
can-apply: can-apply(f;x)
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
le: A ≤ B
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
can-apply: can-apply(f;x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
p-fun-exp: f^n
, 
p-id: p-id()
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
p-compose: f o g
, 
do-apply: do-apply(f;x)
, 
outl: outl(x)
, 
bfalse: ff
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
assert_witness, 
isl_wf, 
top_wf, 
p-fun-exp_wf, 
le_wf, 
assert_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
primrec0_lemma, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
decidable__le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtract-add-cancel, 
assert_functionality_wrt_uiff, 
p-compose_wf, 
squash_wf, 
true_wf, 
p-fun-exp-add, 
nat_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
unionElimination, 
instantiate, 
dependent_set_memberEquality, 
addEquality, 
imageElimination, 
unionEquality, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
addLevel, 
impliesFunctionality, 
functionEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[n:\mBbbN{}].  \mforall{}[y:A].
    \mforall{}[m:\mBbbN{}].  \muparrow{}can-apply(f\^{}m;y)  supposing  m  \mleq{}  n  supposing  \muparrow{}can-apply(f\^{}n;y)
Date html generated:
2017_10_01-AM-09_15_05
Last ObjectModification:
2017_07_26-PM-04_49_53
Theory : general
Home
Index