Nuprl Lemma : p-fun-exp-add

[T:Type]. ∀[n,m:ℕ]. ∀[f:T ⟶ (T Top)].  (f^n f^n f^m ∈ (T ⟶ (T Top)))


Proof




Definitions occuring in Statement :  p-fun-exp: f^n p-compose: g nat: uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right add: m universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q p-fun-exp: f^n
Lemmas referenced :  equal_wf squash_wf true_wf p-fun-exp_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf p-fun-exp-compose iff_weakening_equal p-id_wf primrec_add p-compose_wf top_wf int_seg_wf primrec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache cumulativity functionExtensionality dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination lambdaFormation functionEquality unionEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  (T  +  Top)].    (f\^{}n  +  m  =  f\^{}n  o  f\^{}m)



Date html generated: 2017_10_01-AM-09_14_39
Last ObjectModification: 2017_07_26-PM-04_49_38

Theory : general


Home Index