Nuprl Lemma : p-fun-exp-compose

[T:Type]. ∀[n:ℕ]. ∀[h,f:T ⟶ (T Top)].  (f^n primrec(n;h;λi,g. g) ∈ (T ⟶ (T Top)))


Proof




Definitions occuring in Statement :  p-fun-exp: f^n p-compose: g primrec: primrec(n;b;c) nat: uall: [x:A]. B[x] top: Top lambda: λx.A[x] function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: p-fun-exp: f^n decidable: Dec(P) or: P ∨ Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf equal_wf squash_wf true_wf p-id-compose iff_weakening_equal subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma primrec_add false_wf le_wf p-id_wf p-compose_wf int_seg_wf primrec1_lemma primrec_wf p-fun-exp_wf p-compose-associative
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality functionEquality cumulativity unionEquality unionElimination because_Cache universeEquality applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination instantiate dependent_set_memberEquality functionExtensionality addEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[h,f:T  {}\mrightarrow{}  (T  +  Top)].    (f\^{}n  o  h  =  primrec(n;h;\mlambda{}i,g.  f  o  g))



Date html generated: 2017_10_01-AM-09_14_33
Last ObjectModification: 2017_07_26-PM-04_49_36

Theory : general


Home Index