Nuprl Lemma : p-fun-exp-compose
∀[T:Type]. ∀[n:ℕ]. ∀[h,f:T ⟶ (T + Top)].  (f^n o h = primrec(n;h;λi,g. f o g) ∈ (T ⟶ (T + Top)))
Proof
Definitions occuring in Statement : 
p-fun-exp: f^n
, 
p-compose: f o g
, 
primrec: primrec(n;b;c)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
p-fun-exp: f^n
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
top_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
equal_wf, 
squash_wf, 
true_wf, 
p-id-compose, 
iff_weakening_equal, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
primrec_add, 
false_wf, 
le_wf, 
p-id_wf, 
p-compose_wf, 
int_seg_wf, 
primrec1_lemma, 
primrec_wf, 
p-fun-exp_wf, 
p-compose-associative
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
cumulativity, 
unionEquality, 
unionElimination, 
because_Cache, 
universeEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productElimination, 
instantiate, 
dependent_set_memberEquality, 
functionExtensionality, 
addEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[h,f:T  {}\mrightarrow{}  (T  +  Top)].    (f\^{}n  o  h  =  primrec(n;h;\mlambda{}i,g.  f  o  g))
Date html generated:
2017_10_01-AM-09_14_33
Last ObjectModification:
2017_07_26-PM-04_49_36
Theory : general
Home
Index