Nuprl Lemma : p-id-compose

[A,B:Type]. ∀[f:A ⟶ (B Top)].  (p-id() f ∈ (A ⟶ (B Top)))


Proof




Definitions occuring in Statement :  p-id: p-id() p-compose: g uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-compose: g subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff prop: do-apply: do-apply(f;x) p-id: p-id() can-apply: can-apply(f;x) isl: isl(x) outl: outl(x) assert: b false: False
Lemmas referenced :  top_wf can-apply_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot equal_wf true_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule because_Cache hypothesis functionEquality cumulativity hypothesisEquality unionEquality extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality universeEquality applyEquality baseClosed lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry dependent_functionElimination voidElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (p-id()  o  f  =  f)



Date html generated: 2017_10_01-AM-09_13_56
Last ObjectModification: 2017_07_26-PM-04_49_11

Theory : general


Home Index