Nuprl Lemma : p-id-compose
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)].  (p-id() o f = f ∈ (A ⟶ (B + Top)))
Proof
Definitions occuring in Statement : 
p-id: p-id(), 
p-compose: f o g, 
uall: ∀[x:A]. B[x], 
top: Top, 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
p-compose: f o g, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
do-apply: do-apply(f;x), 
p-id: p-id(), 
can-apply: can-apply(f;x), 
isl: isl(x), 
outl: outl(x), 
assert: ↑b, 
false: False
Lemmas referenced : 
top_wf, 
can-apply_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
true_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
because_Cache, 
hypothesis, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
unionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
universeEquality, 
applyEquality, 
baseClosed, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
voidElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (p-id()  o  f  =  f)
Date html generated:
2017_10_01-AM-09_13_56
Last ObjectModification:
2017_07_26-PM-04_49_11
Theory : general
Home
Index