Nuprl Lemma : can-apply_wf
∀[A:Type]. ∀[f:A ⟶ (Top + Top)]. ∀[x:A].  (can-apply(f;x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
can-apply: can-apply(f;x)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
can-apply: can-apply(f;x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
isl_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
unionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (Top  +  Top)].  \mforall{}[x:A].    (can-apply(f;x)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-03_28_39
Last ObjectModification:
2015_12_27-PM-01_09_17
Theory : general
Home
Index