Nuprl Lemma : can-apply_wf

[A:Type]. ∀[f:A ⟶ (Top Top)]. ∀[x:A].  (can-apply(f;x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  can-apply: can-apply(f;x) bool: 𝔹 uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  can-apply: can-apply(f;x) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  isl_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality unionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (Top  +  Top)].  \mforall{}[x:A].    (can-apply(f;x)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-03_28_39
Last ObjectModification: 2015_12_27-PM-01_09_17

Theory : general


Home Index