Nuprl Lemma : p-compose-associative

[A,B,C,D:Type]. ∀[h:A ⟶ (B Top)]. ∀[g:B ⟶ (C Top)]. ∀[f:C ⟶ (D Top)].
  (f h ∈ (A ⟶ (D Top)))


Proof




Definitions occuring in Statement :  p-compose: g uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-compose: g do-apply: do-apply(f;x) can-apply: can-apply(f;x) all: x:A. B[x] implies:  Q isl: isl(x) outl: outl(x) ifthenelse: if then else fi  btrue: tt bfalse: ff prop:
Lemmas referenced :  top_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule applyEquality hypothesisEquality cumulativity thin unionEquality extract_by_obid hypothesis lambdaFormation unionElimination because_Cache inrEquality sqequalHypSubstitution isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination functionEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[A,B,C,D:Type].  \mforall{}[h:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[g:B  {}\mrightarrow{}  (C  +  Top)].  \mforall{}[f:C  {}\mrightarrow{}  (D  +  Top)].
    (f  o  g  o  h  =  f  o  g  o  h)



Date html generated: 2017_10_01-AM-09_14_00
Last ObjectModification: 2017_07_26-PM-04_49_15

Theory : general


Home Index