Nuprl Lemma : p-compose-associative
∀[A,B,C,D:Type]. ∀[h:A ⟶ (B + Top)]. ∀[g:B ⟶ (C + Top)]. ∀[f:C ⟶ (D + Top)].
  (f o g o h = f o g o h ∈ (A ⟶ (D + Top)))
Proof
Definitions occuring in Statement : 
p-compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-compose: f o g
, 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
isl: isl(x)
, 
outl: outl(x)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
unionEquality, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
unionElimination, 
because_Cache, 
inrEquality, 
sqequalHypSubstitution, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[A,B,C,D:Type].  \mforall{}[h:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[g:B  {}\mrightarrow{}  (C  +  Top)].  \mforall{}[f:C  {}\mrightarrow{}  (D  +  Top)].
    (f  o  g  o  h  =  f  o  g  o  h)
Date html generated:
2017_10_01-AM-09_14_00
Last ObjectModification:
2017_07_26-PM-04_49_15
Theory : general
Home
Index